搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蝙蝠听觉神经系统如何在复杂环境中识别昆虫

丁炯 张宏 童勤业

引用本文:
Citation:

蝙蝠听觉神经系统如何在复杂环境中识别昆虫

丁炯, 张宏, 童勤业

A probable explanation for bat's auditory nervous system identifying inserts in the complex surrounding

Ding Jiong, Zhang Hong, Tong Qin-Ye
PDF
导出引用
  • 生物声纳的高灵敏度和高可靠性一直是仿生设计所追求的目标, 然而至今仍没有一个令人信服的物理模型能很好得解释生物声纳优越性能的原因, 其主要是缺乏对动物听觉系统神经信息编码的认识. 本文从蝙蝠听觉神经系统的生理结构出发, 用圆映射和符号动力学方法讨论了蝙蝠听觉神经系统在复杂环境中处理多普勒信号的一种可能性方案, 并通过计算机仿真证明了其合理性. 针对蝙蝠神经系统的不稳定性, 用符号动力学的方法分析神经系统信息处理的机理具有良好的鲁棒性和高灵敏度. 这种新的信号处理方法的研究, 为生物声纳信号的处理过程的进一步认识提供了一种新的解释.
    The high sensitivity and reliability of the biosonar have attracted many bionic scientists' attention. However, there is no convincing physical model to explain the reasons of the superior performance of biosonar. The main reason is that the neuron coding of the nervous system is still uncertain. Based on the physiological structure of the bat's auditory nervous system, a probable explanation is proposed to discuss the Doppler signal process with the principle of circle maps and symbolic dynamics. Through the computer simulation, the rationality of this method is proved. For the instability of the nervous system, using symbolic dynamics to analye the mechanism of the neural information processing has high sensitivity and robustness. It is expected that the research of this new explanation will be able to promote the understanding of the biosonar signal processing and its applications.
    • 基金项目: 国家自然科学基金(批准号:60871085)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60871085).
    [1]

    Brock F M 2011 Science 333 528

    [2]

    Nobuo S 1990 Scientific American 262 60

    [3]

    Fontaine B, Peremans H 2009 J. Acoust. Soc. America 125 3052

    [4]

    Sanderson M I, Neretti N, Intrator N, Simmons J A 2003 J. Acoust. Soc. America 114 1648

    [5]

    Neretti N, Intrator N, Sanderson M I, Simmons J A, Cooper L N 2003 OCEANS 2003 Proceedings (San Diego, CA, USA: IEEE Xplore) p604

    [6]

    Müller R 2003 Network: Computation in Neural Systems 14 595

    [7]

    O'Neill W E, Nobuo S 1979 Science 203 69

    [8]

    Long C V, Flint J A, Lepper P A 2010 J. Acoust. Soc. America 128 2238

    [9]

    Ma X F, Suga N 2009 J. Neurosci 29 4888

    [10]

    Bear M F, Conors B W, Paradiso M A 2001 Neuroscience Exploring the Brain (2nd Ed.) (London: Lippincott Williams & Wilkins Inc) p350-p395

    [11]

    Nicholls J G, Martin A R, Wallace B G, Fuchs P A 2001 From Neuron to Brain (4th Ed) (Sunderland: Sinauer Associates, Inc) p429-442

    [12]

    Rose J E, Hind J E, Anderson D J, Brugge J F 1971 Journal of Neurophysiology 34 685

    [13]

    Edelman G M, Gally J A 2001 The National Academy of Sciences 98 13763

    [14]

    Zhang H, Liu S F, Qian M Q, Tong Q Y 2009 Acta Phys. Sin 58 7322 (in Chinese) [张宏, 刘淑芳, 钱鸣奇, 童勤业 2009 58 7322]

    [15]

    Scheper V, Paasche G, Miller J M, Warnecke A, Berkingali N, Lenarz T, Stover T 2009 Journal of neuroscience resaerch 87 1389

    [16]

    Nayagam B A, Muniak M A, Ryugo D K 2011 Hearing Research 278 2

    [17]

    Berglund A M, Ryugo D K 1987 The Journal of Comparative Neurology 255 560

    [18]

    Mo J, Li Y Y, Wei C L, Yang M H, Gu H G, Qu S X, Ren W 2010 Chinese Phys. B 19 080513

    [19]

    Wang T T, Li W L, Chen Z H, Miao L 2010 Chinese Phys. B 19 076401

    [20]

    Zhou Z L 1997 System of Symbolic Dynamics (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese) [周作领 1997 符号动力系统 (上海: 上海科技出版社)]

    [21]

    Zhang Z J, Chen S G 1989 Acta Phys. Sin. 38 1 (in Chinese) [张建忠, 陈式刚 1989 38 1]

    [22]

    Zhang W Y, Li J M 2011 Chin. Phys. B 20 030701

    [23]

    Lakshmanan S, Balasubramaniam P 2011 Chin. Phys. B 20 040204

    [24]

    Tong Q Y, Qian M Q, Li X, Guo H J, Han X P, Li G, Shen G Y 2006 Sci. Chin. E 36 449 (in Chinese) [童勤业, 钱鸣奇, 郭宏基, 韩晓鹏, 李光, 沈公羽 2006 中国科学 E 36 449]

    [25]

    Tononi G, Edelman G M 1998 Science 282 1846

    [26]

    Edelman G M 1987 Neural Drawinism (New York: Basic Books)

    [27]

    Sporns O, Tononi G, Edelman G M 2000 Neural Networks 13 909

    [28]

    Cathy J P, Karl J F 2011 Trends in Cognitive Sciences 6 416

    [29]

    Zhang H, Fang L P, Tong Q Y 2007 Acta Phys. Sin. 56 7339 (in Chinese) [张宏, 方路平, 童勤业 2007 56 7339]

    [30]

    Men C, Wang J, Qin Y M, Wei X L, Che Y Q, Deng Bin 2011 Chin. Phys. B 20 128704

  • [1]

    Brock F M 2011 Science 333 528

    [2]

    Nobuo S 1990 Scientific American 262 60

    [3]

    Fontaine B, Peremans H 2009 J. Acoust. Soc. America 125 3052

    [4]

    Sanderson M I, Neretti N, Intrator N, Simmons J A 2003 J. Acoust. Soc. America 114 1648

    [5]

    Neretti N, Intrator N, Sanderson M I, Simmons J A, Cooper L N 2003 OCEANS 2003 Proceedings (San Diego, CA, USA: IEEE Xplore) p604

    [6]

    Müller R 2003 Network: Computation in Neural Systems 14 595

    [7]

    O'Neill W E, Nobuo S 1979 Science 203 69

    [8]

    Long C V, Flint J A, Lepper P A 2010 J. Acoust. Soc. America 128 2238

    [9]

    Ma X F, Suga N 2009 J. Neurosci 29 4888

    [10]

    Bear M F, Conors B W, Paradiso M A 2001 Neuroscience Exploring the Brain (2nd Ed.) (London: Lippincott Williams & Wilkins Inc) p350-p395

    [11]

    Nicholls J G, Martin A R, Wallace B G, Fuchs P A 2001 From Neuron to Brain (4th Ed) (Sunderland: Sinauer Associates, Inc) p429-442

    [12]

    Rose J E, Hind J E, Anderson D J, Brugge J F 1971 Journal of Neurophysiology 34 685

    [13]

    Edelman G M, Gally J A 2001 The National Academy of Sciences 98 13763

    [14]

    Zhang H, Liu S F, Qian M Q, Tong Q Y 2009 Acta Phys. Sin 58 7322 (in Chinese) [张宏, 刘淑芳, 钱鸣奇, 童勤业 2009 58 7322]

    [15]

    Scheper V, Paasche G, Miller J M, Warnecke A, Berkingali N, Lenarz T, Stover T 2009 Journal of neuroscience resaerch 87 1389

    [16]

    Nayagam B A, Muniak M A, Ryugo D K 2011 Hearing Research 278 2

    [17]

    Berglund A M, Ryugo D K 1987 The Journal of Comparative Neurology 255 560

    [18]

    Mo J, Li Y Y, Wei C L, Yang M H, Gu H G, Qu S X, Ren W 2010 Chinese Phys. B 19 080513

    [19]

    Wang T T, Li W L, Chen Z H, Miao L 2010 Chinese Phys. B 19 076401

    [20]

    Zhou Z L 1997 System of Symbolic Dynamics (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese) [周作领 1997 符号动力系统 (上海: 上海科技出版社)]

    [21]

    Zhang Z J, Chen S G 1989 Acta Phys. Sin. 38 1 (in Chinese) [张建忠, 陈式刚 1989 38 1]

    [22]

    Zhang W Y, Li J M 2011 Chin. Phys. B 20 030701

    [23]

    Lakshmanan S, Balasubramaniam P 2011 Chin. Phys. B 20 040204

    [24]

    Tong Q Y, Qian M Q, Li X, Guo H J, Han X P, Li G, Shen G Y 2006 Sci. Chin. E 36 449 (in Chinese) [童勤业, 钱鸣奇, 郭宏基, 韩晓鹏, 李光, 沈公羽 2006 中国科学 E 36 449]

    [25]

    Tononi G, Edelman G M 1998 Science 282 1846

    [26]

    Edelman G M 1987 Neural Drawinism (New York: Basic Books)

    [27]

    Sporns O, Tononi G, Edelman G M 2000 Neural Networks 13 909

    [28]

    Cathy J P, Karl J F 2011 Trends in Cognitive Sciences 6 416

    [29]

    Zhang H, Fang L P, Tong Q Y 2007 Acta Phys. Sin. 56 7339 (in Chinese) [张宏, 方路平, 童勤业 2007 56 7339]

    [30]

    Men C, Wang J, Qin Y M, Wei X L, Che Y Q, Deng Bin 2011 Chin. Phys. B 20 128704

  • [1] 董成伟. 非扩散洛伦兹系统的周期轨道.  , 2018, 67(24): 240501. doi: 10.7498/aps.67.20181581
    [2] 计青山, 郝鸿雁, 张存喜, 王瑞. 硅烯中受电场调控的体能隙和朗道能级.  , 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [3] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器.  , 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [4] 张宏, 丁炯, 童勤业, 程千流. 双耳幅值差确定声源方向的神经信息处理机理研究.  , 2015, 64(18): 188701. doi: 10.7498/aps.64.188701
    [5] 黄晓林, 霍铖宇, 司峻峰, 刘红星. 等概率符号化样本熵应用于脑电分析.  , 2014, 63(10): 100503. doi: 10.7498/aps.63.100503
    [6] 徐红梅, 金永镐, 金璟璇. 基于符号动力学的开关变换器时间不可逆性分析.  , 2014, 63(13): 130502. doi: 10.7498/aps.63.130502
    [7] 陈冲, 丁炯, 张宏, 陈琢. 累积放电模型及其符号动力学研究.  , 2013, 62(14): 140502. doi: 10.7498/aps.62.140502
    [8] 王福来. 基于复合符号混沌的伪随机数生成器及加密技术.  , 2011, 60(11): 110517. doi: 10.7498/aps.60.110517
    [9] 王兆军, 吕国梁, 朱春花, 张军. 中子星中简并电子气体的临界磁化.  , 2011, 60(4): 049702. doi: 10.7498/aps.60.049702
    [10] 宋爱玲, 黄晓林, 司峻峰, 宁新宝. 符号动力学在心率变异性分析中的参数选择.  , 2011, 60(2): 020509. doi: 10.7498/aps.60.020509
    [11] 沈民奋, 林兰馨, 李小艳, 常春起. 基于符号动力学的耦合映像格子系统的初值估计.  , 2009, 58(5): 2921-2929. doi: 10.7498/aps.58.2921
    [12] 张宏, 刘淑芳, 钱鸣奇, 童勤业. 神经系统的简并性与序空间编码分析.  , 2009, 58(10): 7322-7329. doi: 10.7498/aps.58.7322
    [13] 王学梅, 张 波, 丘东元, 陈良刚. DC-DC变换器的符号时间序列描述及模块熵分析.  , 2008, 57(10): 6112-6119. doi: 10.7498/aps.57.6112
    [14] 刘小峰, 俞文莉. 基于符号动力学的认知事件相关电位的复杂度分析.  , 2008, 57(4): 2587-2594. doi: 10.7498/aps.57.2587
    [15] 王 开, 裴文江, 夏海山, 何振亚. 基于符号向量动力学的耦合映像格子初始向量估计.  , 2007, 56(7): 3766-3770. doi: 10.7498/aps.56.3766
    [16] 任国斌, 王 智, 娄淑琴, 简水生. 光子晶体光纤模式的简并特性研究.  , 2004, 53(6): 1856-1861. doi: 10.7498/aps.53.1856
    [17] 肖方红, 阎桂荣, 韩宇航. 混沌伪随机序列复杂度分析的符号动力学方法.  , 2004, 53(9): 2876-2881. doi: 10.7498/aps.53.2876
    [18] 应阳君, 王光瑞, 陈式刚. 一种数值方法定义Hénon映射符号动力学的讨论.  , 1994, 43(8): 1234-1240. doi: 10.7498/aps.43.1234
    [19] 谢发根. 一维简并双参数四次方映射的符号动力学.  , 1994, 43(2): 191-197. doi: 10.7498/aps.43.191
    [20] 张忠建, 陈式刚. 圆映象的符号动力学.  , 1989, 38(1): 1-8. doi: 10.7498/aps.38.1
计量
  • 文章访问数:  8149
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-22
  • 修回日期:  2012-01-12
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map