-
采用等离子体增强化学气相沉积技术,以SiH4作为硅源, NH3和N2共同作为氮源,在单晶硅衬底上制备了不同的氮化硅薄膜. X射线衍射分析薄膜晶体结构,通过计算晶格尺寸大小证明了纳米硅颗粒的存在. 傅里叶变换红外光谱分析了薄膜中的键合作用的变化并结合化学反应过程对氮化硅薄膜中纳米硅颗粒的形成机制进行了研究,发现SiSi键作为硅纳米颗粒的初始位置, 当反应朝着生成SiSi的方向进行时,可以促进氮化硅薄膜中硅纳米颗粒的形成. X射线衍射分析和光致发光实验结果表明SiSi键浓度增大时, 所形成的纳米硅颗粒的尺寸和浓度都随之增大.
-
关键词:
- 等离子体增强化学气相沉积技术 /
- 氮化硅薄膜 /
- 纳米硅颗粒 /
- 键合作用
The silicon nitride films are prepared on c-Si substrates by plasma enhanced chemical deposition (PECVD) with silane as the silicon source in mixture gas (N2/NH3) as the nitrogen source. We prepare different kinds of films at different flow rates of the nitrogen with other conditions kept the same. X-ray diffraction (XRD) is employed to analyze the crystal structure, and the existence of the silicon nanoparticles embedded in the silicon nitride film is verified according to the caculation of the lattice size. Fourier transform infrared spectra are employed to probe the concentration evolutions of various chemical bonds with the flow rate of the nitrogen, with which by combining the chemical reaction process, the formation mechanism of the silicon nano-clusters embedded in silicon nitride is investigated. The results show the initial positions of silicon nanoparticles are conducible to the formation of silicon nanoparticles when the chemical reaction proceeds towards the direction in which the SiSi bonds form. In addition, XRD analysis and photoluminescence characteristics show that the size and the concentration of the embedded nanoparticles increase with the flow rate of the nitrogen increasing.-
Keywords:
- PECVD /
- silicon nanoparticles /
- silicon nitride /
- chemical bonds
[1] Zhao X, Schoenfeld O, Kusano J, Aoyagi Y, Sugano T 1994 Jpn. J. Appl. Phys. 33 649
[2] Zhu M F, Chen G, Xu H Z, Han Y Q 1997 Acta Phys. Sin. 46 1645 (in Chinese) [朱美芳, 陈国, 许怀哲, 韩一琴 1997 46 1645]
[3] Ma Z X, Liao X B, Cheng W C, Yue G Z, Wang Y Q, He J, Kong G L 1998 Science in China Ser. A 28 555 (in Chinese) [马智训, 廖显伯, 程文超, 岳国珍, 王永谦, 何杰, 孔光临 1998 中国科学(A辑) 28 555]
[4] Yu W, Wang B Z, Lu W B, Yang Y B, Han L, Fu G S 2004 Chin. Phys. Lett. 21 1320
[5] Ding W C, Liu Y, Zhang Y, Guo J C, Zuo Y H, Cheng B W, Yu J Z,Wang Q M 2009 Chin. Phys. B 18 7
[6] Huang R, Wang D Q, Song J, Ding H L, Wang X, Guo Y Q, Chen K J, Xu J, Li W, Ma Z Y 2010 Acta Phys. Sin. 59 5823 (in Chinese) [黄锐, 王旦清, 宋捷, 丁宏林, 王祥, 郭艳清, 陈坤基, 徐骏, 李伟, 马忠元 2010 59 5823]
[7] Mercaldo L V, Veneri P D, Esposito E M, Usatii E M I, Privato C 2009 Mater. Sci. Engin. B 5 74
[8] Rusli L K, Yu M B, Ding L 2011 Appl. Phys. Lett. 98 061105
[9] Murata T, Miyagawa Y, Matsuura M, Asai K, Miyatake H 2010 Japan. J. Appl. Phys. 49 08JF08
[10] Zhai G J, Yang J S, Cue N, Wang X S 2000 Thin Solid Films 366 121
[11] Song J, Guo Y Q, Wang X, Ding H L, Huang R 2010 Acta Phys. Sin. 59 7378 (in Chinese) [宋捷, 郭艳清, 王祥, 丁宏林, 黄锐 2010 59 7378]
[12] So Y H, Huang S J, Conibeer G, Green M A 2011 Thin Solid Films 30 137
[13] Kim B H, Cho C H, Kim T W, Park N M, Sung G Y, Park S J 2005 Appl. Phys. Lett. 86 091908
[14] Ren Y L, Weber K J, Nursam N M, Wang D 2010 Appl. Phys. Lett. 97 202907
[15] Espositoa E M, Mercaldoa L V, Veneri P D, Lancellotti L, Privatoa C 2010 Energy Procedia 2 159
[16] Yu W, Zhang L, Zhen L F, Yang Y B, Han L, Fu G S 2007 Chin. J. Luminescence 28 913 (in Chinese) [于威, 张丽, 甄兰芳, 杨彦斌, 韩理, 傅广生 2007 发光学报 28 913]
[17] Sheoran M, Kim D S, Rohatgi A, Dekkers H F W, Beaucarne G, Young M, Asher S 2008 Appl. Phys. Lett. 92 172107
-
[1] Zhao X, Schoenfeld O, Kusano J, Aoyagi Y, Sugano T 1994 Jpn. J. Appl. Phys. 33 649
[2] Zhu M F, Chen G, Xu H Z, Han Y Q 1997 Acta Phys. Sin. 46 1645 (in Chinese) [朱美芳, 陈国, 许怀哲, 韩一琴 1997 46 1645]
[3] Ma Z X, Liao X B, Cheng W C, Yue G Z, Wang Y Q, He J, Kong G L 1998 Science in China Ser. A 28 555 (in Chinese) [马智训, 廖显伯, 程文超, 岳国珍, 王永谦, 何杰, 孔光临 1998 中国科学(A辑) 28 555]
[4] Yu W, Wang B Z, Lu W B, Yang Y B, Han L, Fu G S 2004 Chin. Phys. Lett. 21 1320
[5] Ding W C, Liu Y, Zhang Y, Guo J C, Zuo Y H, Cheng B W, Yu J Z,Wang Q M 2009 Chin. Phys. B 18 7
[6] Huang R, Wang D Q, Song J, Ding H L, Wang X, Guo Y Q, Chen K J, Xu J, Li W, Ma Z Y 2010 Acta Phys. Sin. 59 5823 (in Chinese) [黄锐, 王旦清, 宋捷, 丁宏林, 王祥, 郭艳清, 陈坤基, 徐骏, 李伟, 马忠元 2010 59 5823]
[7] Mercaldo L V, Veneri P D, Esposito E M, Usatii E M I, Privato C 2009 Mater. Sci. Engin. B 5 74
[8] Rusli L K, Yu M B, Ding L 2011 Appl. Phys. Lett. 98 061105
[9] Murata T, Miyagawa Y, Matsuura M, Asai K, Miyatake H 2010 Japan. J. Appl. Phys. 49 08JF08
[10] Zhai G J, Yang J S, Cue N, Wang X S 2000 Thin Solid Films 366 121
[11] Song J, Guo Y Q, Wang X, Ding H L, Huang R 2010 Acta Phys. Sin. 59 7378 (in Chinese) [宋捷, 郭艳清, 王祥, 丁宏林, 黄锐 2010 59 7378]
[12] So Y H, Huang S J, Conibeer G, Green M A 2011 Thin Solid Films 30 137
[13] Kim B H, Cho C H, Kim T W, Park N M, Sung G Y, Park S J 2005 Appl. Phys. Lett. 86 091908
[14] Ren Y L, Weber K J, Nursam N M, Wang D 2010 Appl. Phys. Lett. 97 202907
[15] Espositoa E M, Mercaldoa L V, Veneri P D, Lancellotti L, Privatoa C 2010 Energy Procedia 2 159
[16] Yu W, Zhang L, Zhen L F, Yang Y B, Han L, Fu G S 2007 Chin. J. Luminescence 28 913 (in Chinese) [于威, 张丽, 甄兰芳, 杨彦斌, 韩理, 傅广生 2007 发光学报 28 913]
[17] Sheoran M, Kim D S, Rohatgi A, Dekkers H F W, Beaucarne G, Young M, Asher S 2008 Appl. Phys. Lett. 92 172107
计量
- 文章访问数: 7977
- PDF下载量: 765
- 被引次数: 0