-
利用直流电化学沉积法, 在多孔阳极氧化铝模板中首次制备出了具有[220]取向的单晶 面心立方结构的CoCu固溶体合金纳米线阵列, 其Co含量高达70%.透射电子显微镜显示纳米线均匀连续, 具有较高的长径比, 约为300. 磁性测量表明所制备的Co70Cu30 合金纳米线具有超高的矫顽力Hc//=2438 Oe(1 Oe=79.5775 A/m)和较高的矩形比S//=0.76, 远高于以往报道的CoCu合金纳米线的磁性, 分析表明磁性好的主要原因是由于较高Co含量和高形状各向异性. 通过磁性测量和模型计算, 得到Co70Cu30 合金纳米线阵列在反磁化过程中遵从对称扇型转动的球链模型, 并从结构的角度分析了Co70Cu30合金纳米线阵列的反磁化行为.CoCu solid solution alloy nanowire arrays which exhibit the face-centered cubic structure with strong [220] orientation along the nanowire axes are fabricated for first time in the anodic aluminum oxide template by electrodeposition. The proportion of Co ingredient in CoCu alloy nanowire arrays is up to 70%. Transmission electron microscopy revealts that the nanowire arrays are uniform and continuous and have a large aspect ratio of about 300. The magnetic hysteresis loop demonstrates that the Co70Cu30 alloy nanowire arrays have a large coercivity of about 2438 Oe and relatively large squareness of about 0.76 parallel to nanowire arrays which greatly exceeds the value previousely reported. Good magnetic properties are achieved due mainly to the larger proportion of Co ingredient than that in the normal CoCu alloy nanowire arrays and the large shape anisotropy. The results of magnetic measurement and the calculations from formula demonstrate that the symmetric fanning mechanism of sphere chains model could be employed to explain the magnetization reversal process which is related to the structure of the Co70Cu30 nanowire arrays.
-
Keywords:
- CoCu alloy nanowire arrays /
- electrodeposition /
- magnetic properties /
- magnetization reversal mechanism
[1] Qin D H, Cao L, Sun Q Y 2002 Chem. Phys. Lett. 358 484
[2] Thum-Albrecht T, Schotter J, Kastle G A, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black C T, Tuominen M T, Bussell T P 2000 Science 290 2126
[3] [4] De Grockel H A M, Kopinga K, De Jonge W J M, Panissod P, Schille J P, Den Broeder F J A 1991 Phys. Rev. B 44 9100
[5] [6] Piraux L, George M, Despres J F, Leroy C, Ferain E, Legras R, Ounadjela K, Fert A 1994 Appl. Phys. Lett. 65 192484
[7] [8] Blondel A, Meier J P, Doudin B, Ansermet J P 1994 Appl. Phys. Lett. 65 233019
[9] [10] [11] Thomson T, Riedi P C, Morawe C, Zabel H 1996 J. Magn. Magn. Mater. 156 89
[12] Cho J U, Min J H, Ko S P, Soh J Y, Kim Y K, Wu J H, Choi S H 2006 J. Appl. Phys. 99 08C909
[13] [14] [15] Blythe H J, Fedosyuk V M, Kasyutich O I, Schwarzacher W 2000 J. Magn. Magn. Mater. 208 2518
[16] [17] Wang Y W, Zhang L D, Meng G W, Peng X S, Jin Y X, Zhang J 2001 J. Phys. Chem. B 106 2502
[18] Xue S H, Cao C B, Ji F Q 2005 Mater. Lett. 59 3173
[19] [20] [21] Chen L J, Li Y X, Chen G F, Liu H Y, Liu X X, Wu G H 2006 Acta Phys. Sin. 55 5516 (in Chinese) [陈丽婕, 李养贤, 陈贵峰, 刘何燕, 刘晓旭, 吴光恒 2006 55 5516]
[22] [23] Fan X, Mashimo T, Huang X S 2004 Phys. Rev. B 69 094432
[24] [25] Cao H Q, Wang L D, Wu U Q, Wang G Z, Zhang L, Liu X W 2006 Chem. Phys. Chem. 7 1500
[26] [27] Wang P P, Gao L M, Qiu Z Y, Song X P, Wang L Q, Yang S, Murakami R 2008 J. Appl. Phys. 104 064304
[28] Liu X X, Wang H Y, Liu B H, Zhu W, Feng L, Wu G H, Zhao J L, Li Y X 2010 Acta Phys. Sin. 59 2079 (in Chinese) [刘晓旭, 王鸿雁, 刘宝海, 朱伟, 冯琳, 吴光恒, 赵建玲, 李养贤 2010 59 2079]
[29] [30] [31] Wang T, Li F S, Wang Y, Song L J 2006 Phys. Stat. Sol. (a) 203 2426
[32] Yang Z H, Li Z W, Liu L, Kong L B 2011 J. Magn. Magn. Mater. 323 2674
[33] [34] [35] Childress J R, Chien C L 1991 Phys. Rev. B 43 8089
[36] Qin D H, Wang C W, Sun Q Y, Li H L 2002 Appl. Phys. A 74 761
[37] [38] Qin D H, Peng Y, Cao L, Li H L 2003 Chem. Phys. L 374 661
[39] [40] Frei E H, Shtrikman S, Treves D 1957 Phys. Rev. 106 446
[41] [42] [43] Jacobs I S, Bean C P 1955 Phys. Rev. 100 1060
[44] Han G C, Zong B Y, Luo P 2003 J. Appl. Phys. 93 9202
[45] [46] Gao J H, Zhan Q F, He W, Sun D L, Cheng Z H 2005 Appl. Phys. Lett. 86 232506
[47] -
[1] Qin D H, Cao L, Sun Q Y 2002 Chem. Phys. Lett. 358 484
[2] Thum-Albrecht T, Schotter J, Kastle G A, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black C T, Tuominen M T, Bussell T P 2000 Science 290 2126
[3] [4] De Grockel H A M, Kopinga K, De Jonge W J M, Panissod P, Schille J P, Den Broeder F J A 1991 Phys. Rev. B 44 9100
[5] [6] Piraux L, George M, Despres J F, Leroy C, Ferain E, Legras R, Ounadjela K, Fert A 1994 Appl. Phys. Lett. 65 192484
[7] [8] Blondel A, Meier J P, Doudin B, Ansermet J P 1994 Appl. Phys. Lett. 65 233019
[9] [10] [11] Thomson T, Riedi P C, Morawe C, Zabel H 1996 J. Magn. Magn. Mater. 156 89
[12] Cho J U, Min J H, Ko S P, Soh J Y, Kim Y K, Wu J H, Choi S H 2006 J. Appl. Phys. 99 08C909
[13] [14] [15] Blythe H J, Fedosyuk V M, Kasyutich O I, Schwarzacher W 2000 J. Magn. Magn. Mater. 208 2518
[16] [17] Wang Y W, Zhang L D, Meng G W, Peng X S, Jin Y X, Zhang J 2001 J. Phys. Chem. B 106 2502
[18] Xue S H, Cao C B, Ji F Q 2005 Mater. Lett. 59 3173
[19] [20] [21] Chen L J, Li Y X, Chen G F, Liu H Y, Liu X X, Wu G H 2006 Acta Phys. Sin. 55 5516 (in Chinese) [陈丽婕, 李养贤, 陈贵峰, 刘何燕, 刘晓旭, 吴光恒 2006 55 5516]
[22] [23] Fan X, Mashimo T, Huang X S 2004 Phys. Rev. B 69 094432
[24] [25] Cao H Q, Wang L D, Wu U Q, Wang G Z, Zhang L, Liu X W 2006 Chem. Phys. Chem. 7 1500
[26] [27] Wang P P, Gao L M, Qiu Z Y, Song X P, Wang L Q, Yang S, Murakami R 2008 J. Appl. Phys. 104 064304
[28] Liu X X, Wang H Y, Liu B H, Zhu W, Feng L, Wu G H, Zhao J L, Li Y X 2010 Acta Phys. Sin. 59 2079 (in Chinese) [刘晓旭, 王鸿雁, 刘宝海, 朱伟, 冯琳, 吴光恒, 赵建玲, 李养贤 2010 59 2079]
[29] [30] [31] Wang T, Li F S, Wang Y, Song L J 2006 Phys. Stat. Sol. (a) 203 2426
[32] Yang Z H, Li Z W, Liu L, Kong L B 2011 J. Magn. Magn. Mater. 323 2674
[33] [34] [35] Childress J R, Chien C L 1991 Phys. Rev. B 43 8089
[36] Qin D H, Wang C W, Sun Q Y, Li H L 2002 Appl. Phys. A 74 761
[37] [38] Qin D H, Peng Y, Cao L, Li H L 2003 Chem. Phys. L 374 661
[39] [40] Frei E H, Shtrikman S, Treves D 1957 Phys. Rev. 106 446
[41] [42] [43] Jacobs I S, Bean C P 1955 Phys. Rev. 100 1060
[44] Han G C, Zong B Y, Luo P 2003 J. Appl. Phys. 93 9202
[45] [46] Gao J H, Zhan Q F, He W, Sun D L, Cheng Z H 2005 Appl. Phys. Lett. 86 232506
[47]
计量
- 文章访问数: 6607
- PDF下载量: 362
- 被引次数: 0