-
本文利用分子光谱理论系统的计算和分析N2第二正带系(C3uB3g)的发射光谱, 以研究光谱强度的分布规律与不同温度条件和气体条件的关系. 基于N2的三重态能级结构特性, 重点计算和讨论了发射光谱的概个重要参数: 通过求解高、低电子态的哈密顿矩阵得到了振转能级特性; 利用r质心近似法求取了能级间跃迁的电偶极矩函数和爱因斯坦跃迁概率; 进而计算了不同振动和转动温度条件下谱线的强度分布. 进行了N2和Ar的混合放电实验, 利用实验光谱数据同理论结果进行拟合分析, 确定了N2分子的振动温度和转动温度分别约为4300 K和800 K. 另外由于潘宁离化效应, N2浓度减小时谱线强度呈现先增强后减弱的趋势. 实验结果很好的验证了N2第二正带系光谱理论计算的正确性.The optical emission spectrum of the second positive system of N2(C3uB3g)isanalyzed and calculated based on the energy structure of nitrogen radical triplet system. Some key parameters of the equation for the radiative transition intensity are evaluated theoretically, including the potentials of the upper and lower states obtained from diagonalizing their Hamiltonian matrices, the electronic transition moments calculated by using r-centroid approximation, and the Einstein coefficients of different vib-rotational levels. For comparing with the theoretical spectrum, we achieve the measured results from corona discharge experiments of N2 and Ar. By fitting the measured spectral intensities and the calculated ones, the vibrational and the rotational temperatures are determined approximately to be 4300 K and 800 K. The results also demonstrate that with the reduction of nitrogen concentration, the intensity of N2 radiative state first increases and then decreases due to Penning excitation from argon metastable states. The experimental results verify the correctness of the theoretical calculations on the second positive system.
[1] Gabi D S, Mario J, Farah K, Deanna A L, Christophe O L 2010 J. Phys. Chem. A 114 201
[2] Herzberg G 1983 Molecular Spectra and Molecular Structure (Beijing: Science Press) p22 (in Chinese) [G. 赫兹堡 1983 分子光谱与分子结构(第一卷)(北京:科学出版社) 第22页]
[3] Jain D C, Sahni R C 1967 J. Quant. Spectrosc. Radiat. Transfer 7 475
[4] Jain D C 1972 J. Quant. Spectrosc. Radiat. Transfer 12 759
[5] Lorenzo R, Campos J 1982 J. Mol. Spectrosc 92 85
[6] Roux F, Michaud F 1989 Can. J. Phys. 67 143
[7] Chauveau S, Perrin M Y, Riviere P, Soufiani A 2002 J. Quant. Spectrosc. Radiat. Transfer 72 503
[8] Ryo Ono, Tobaru C, Teramoto Y, Oda T 2009 Plasma Sources Sci. Technol. 18 025006
[9] Mi L, Xu P, Wang P N 2005 J. Phys. D: Appl. Phys. 38 3885
[10] Qayyum A, Shaista Zeb, Naveed M A, Rehman N U, Ghauri S A, Zakaullah M 2007 J. Quant. Spectrosc. Radiat. Transfer 107 361
[11] Debal F, Bretagne J, Ricard A, Jumet M, Wautelet M, Dauchot J P, Hecq M 1998 Surface and Coatings Technology 98 1387
[12] Li X C, Yuan N, Jia P Y, Niu D Y 2010 Spectrosc. Spec. Anal. 30 2894 (in Chinese) [李雪辰, 袁宁, 贾鹏英, 牛东莹 2010 光谱学与光谱分析 30 2894]
[13] Wang W C, Liu F, Zhang J L, Ren C S 2004 Spectrosc. Spec. Anal. 24 1288 (in Chinese) [王文春, 刘峰, 张家良, 任春生 2004 光谱学与光谱分析 24 1288]
[14] Yin L Y, Wen X Q, Wang D Z 2008 Spectrosc. Spec. Anal. 28 2745 (in Chinese) [尹利勇, 温小琼, 王德真 2008 光谱学与光谱分析 28 2745]
[15] Liang Z, Luo H Y, Wang X X, Guan Z C, Wang L M 2010 Acta Phys. Sin. 59 8739 (in Chinese) [梁卓, 罗海云, 王新新, 关志成, 王黎明 2010 59 8739]
[16] Peng Z M, Ding Y J, Yang Q S, Jiang Z L 2011 Acta Phys. Sin. 60 053302 (in Chinese) [彭志敏, 丁艳军, 杨乾锁, 姜宗林 2011 60 053302]
[17] Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 60 104702]
[18] Lofthus A, Krupenie P H 1977 J. Phys. Chem. Ref. Data 6 113
[19] Roux F, Michaud F 1993 J. Mol. Spectrosc. 158 270
[20] Roux F, Michaud F 1983 J. Mol. Spectrosc. 97 253
[21] Zare R N 1973 J. Mol. Spectrosc 46 37
[22] Isola L, Lopez M, Gomez B J 2011 Journal of Physics D: Applied Physics 44 375204
[23] Jamroz P, Zyrnicki W 2010 Vacuum 84 940
[24] Winchester M R, Marcus R K 1996 Spectrochimica Acta B 51 839
[25] Trad H, Higelin P, Chaumeix N D, Rousselle C M 2005 J. Quant. Spectrosc. Radiat. Transfer 90 275
-
[1] Gabi D S, Mario J, Farah K, Deanna A L, Christophe O L 2010 J. Phys. Chem. A 114 201
[2] Herzberg G 1983 Molecular Spectra and Molecular Structure (Beijing: Science Press) p22 (in Chinese) [G. 赫兹堡 1983 分子光谱与分子结构(第一卷)(北京:科学出版社) 第22页]
[3] Jain D C, Sahni R C 1967 J. Quant. Spectrosc. Radiat. Transfer 7 475
[4] Jain D C 1972 J. Quant. Spectrosc. Radiat. Transfer 12 759
[5] Lorenzo R, Campos J 1982 J. Mol. Spectrosc 92 85
[6] Roux F, Michaud F 1989 Can. J. Phys. 67 143
[7] Chauveau S, Perrin M Y, Riviere P, Soufiani A 2002 J. Quant. Spectrosc. Radiat. Transfer 72 503
[8] Ryo Ono, Tobaru C, Teramoto Y, Oda T 2009 Plasma Sources Sci. Technol. 18 025006
[9] Mi L, Xu P, Wang P N 2005 J. Phys. D: Appl. Phys. 38 3885
[10] Qayyum A, Shaista Zeb, Naveed M A, Rehman N U, Ghauri S A, Zakaullah M 2007 J. Quant. Spectrosc. Radiat. Transfer 107 361
[11] Debal F, Bretagne J, Ricard A, Jumet M, Wautelet M, Dauchot J P, Hecq M 1998 Surface and Coatings Technology 98 1387
[12] Li X C, Yuan N, Jia P Y, Niu D Y 2010 Spectrosc. Spec. Anal. 30 2894 (in Chinese) [李雪辰, 袁宁, 贾鹏英, 牛东莹 2010 光谱学与光谱分析 30 2894]
[13] Wang W C, Liu F, Zhang J L, Ren C S 2004 Spectrosc. Spec. Anal. 24 1288 (in Chinese) [王文春, 刘峰, 张家良, 任春生 2004 光谱学与光谱分析 24 1288]
[14] Yin L Y, Wen X Q, Wang D Z 2008 Spectrosc. Spec. Anal. 28 2745 (in Chinese) [尹利勇, 温小琼, 王德真 2008 光谱学与光谱分析 28 2745]
[15] Liang Z, Luo H Y, Wang X X, Guan Z C, Wang L M 2010 Acta Phys. Sin. 59 8739 (in Chinese) [梁卓, 罗海云, 王新新, 关志成, 王黎明 2010 59 8739]
[16] Peng Z M, Ding Y J, Yang Q S, Jiang Z L 2011 Acta Phys. Sin. 60 053302 (in Chinese) [彭志敏, 丁艳军, 杨乾锁, 姜宗林 2011 60 053302]
[17] Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 60 104702]
[18] Lofthus A, Krupenie P H 1977 J. Phys. Chem. Ref. Data 6 113
[19] Roux F, Michaud F 1993 J. Mol. Spectrosc. 158 270
[20] Roux F, Michaud F 1983 J. Mol. Spectrosc. 97 253
[21] Zare R N 1973 J. Mol. Spectrosc 46 37
[22] Isola L, Lopez M, Gomez B J 2011 Journal of Physics D: Applied Physics 44 375204
[23] Jamroz P, Zyrnicki W 2010 Vacuum 84 940
[24] Winchester M R, Marcus R K 1996 Spectrochimica Acta B 51 839
[25] Trad H, Higelin P, Chaumeix N D, Rousselle C M 2005 J. Quant. Spectrosc. Radiat. Transfer 90 275
计量
- 文章访问数: 11247
- PDF下载量: 1169
- 被引次数: 0