搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

经颅磁刺激感应外电场作用下最小神经元模型放电起始动态机理分析

金淇涛 王江 伊国胜 李会艳 邓斌 魏熙乐 车艳秋

引用本文:
Citation:

经颅磁刺激感应外电场作用下最小神经元模型放电起始动态机理分析

金淇涛, 王江, 伊国胜, 李会艳, 邓斌, 魏熙乐, 车艳秋

Action potential initial dynamical mechanism analysis in a minimum neuron model exposure to TMS induced electric field

Jin Qi-Tao, Wang Jiang, Yi Guo-Sheng, Li Hui-Yan, Deng Bin, Wei Xi-Le, Che Yan-Qiu
PDF
导出引用
  • 经颅磁刺激(TMS)是一种采用电磁线圈在大脑指定区域产生磁场的刺激方式. TMS的治疗原理是通过电磁感应产生作用于神经元的外加电场进而影响神经元编码. 然而目前TMS感应外电场改变神经元编码的内在机理尚不清楚.研究表明, 神经元编码由神经元的放电起始动态机理决定. 本文建立了TMS感应外电场作用下的最小神经元模型, 采用相平面分析和分岔分析方法, 研究了外电场作用下神经元放电起始动态的动力学机理, 并从阈下电位的不同动力学特性离子电流竞争角度揭示了TMS感应外电 场作用下神经元放电起始动态的生理学机理.
    Transcranial magnetic stimulation (TMS) is a kind of brain stimulation method of producing magnetic field at the designated area of brain employing electromagnetic coils. The principle of TMS is to apply an electric field which is generated through the electromagnetic induction to neuron, thereby influencing the excitability of neuron. Though it has been used for decades, its underlying mechanism, i.e., how TMS induction electric field changes neuronal excitability, is still unknown. To address this problem, we establish a minimum neuron model under action of TMS induced electric field, analyze the mechanism from the viewpoint of action potential initial dynamical mechanism which has been proved to be the decision factor of neural coding in previous studies. Through phase plane and bifurcation analysis, we reveal the dynamical mechanism of different firing patterns of neuron. Finally, we find that the physiological basis of different excitabilities under action of TMS induced electric field, which is the different outcomes of competition between ion currents of neuron with different kinetic behaviors in sub-threshold potential.
    • 基金项目: 国家自然科学基金(批准号: 61072012, 61172009)和国家自然科学基金青年科学基金(批准号: 50907044, 60901035)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61072012, 61172009) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 50907044, 60901035).
    [1]

    Arias C O 2008 International Archives of Medicine 1 2

    [2]

    Sewerin S, Taubert M, Vollmann H, Villringer A, Ragert P 2011 BMC Neurosci. 12 45

    [3]

    Casali A G, Casarotto S, Rosanova M, Mariptti M, Massimini M 2010 NeuroImage 49 1459

    [4]

    Pashut T, Wolfus S, Friedman A, Lavidor M, Bar G I, Yosef Y, Korngreen A 2011 PLoS Comput. Biol. 7 e1002022

    [5]

    Wagner T, Valero C A, Pascual L A 2007 Annu. Rev. Biomed. Eng. 9 1

    [6]

    Maki H 2011 Ph. D. Dissertation (Espoo: Aalto University)

    [7]

    Miniussi C, Ruzzoli M, Walsh V 2010 Cortex 46 128

    [8]

    Huang Y Z, Rothwell J C, Chen R S, Lu C S, Chuang W L 2011 Clin. Neurophysiol. 122 1011

    [9]

    Rossini P M, Rossini L, Ferreri F 2010 IEEE Eng. Med. Biol. 29 84

    [10]

    Kobayashi M, Leone A P 2003 Lancet Neurol. 2 145

    [11]

    Censor N, Cohen G L 2011 J. Physiol. 589 21

    [12]

    Prescott S A, Ratté S, Koninck Y D, Sejnowski T J 2006 J. Neurosci. 26 9084

    [13]

    Prescott S A, Ratté S, Koninck Y D, Sejnowski T J 2008 J. Neurophysiol. 100 3030

    [14]

    Toporikova N, Tabak J, Freeman M E, Bertram R 2008 Neural Comput. 20 436

    [15]

    Meng X Y, Lu Q S, Rinzel J 2011 J. Comput. Neurosci. 31 117

    [16]

    RIchardson M J E, Brunel N, Hakim V 2003 J. Neurophysiol. 89 2538

    [17]

    Trocme N F, Hansel D, Vreeswijk C V, Brunel N 2003 J. Neurosci. 23 11628

    [18]

    Zeberg H, Blomberg C, Arhem P 2010 PLoS Comput. Biol. 6 e1000753

    [19]

    Prescott S A, Koninck Y D, Sejnowski T J 2008 PLoS Comput. Biol. 4 e1000198

    [20]

    Hodgkin A, Huxley A 1952 J. Physiol. 117 500

    [21]

    Izhikevich E M 2005 Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting (Cambridge: The MIT Press) p1

    [22]

    Coggan J S, Prescott S A, Bartol T M, Sejnowski T J 2010 PNAS 107 20602

    [23]

    Xie Y, Aihara K, Kang Y M 2008 Phys. Rev. E 77 021917

    [24]

    Liu Y, Xie Y 2010 Acta Phys. Sin. 59 2147 (in Chinese) [刘勇, 谢勇 2010 59 2147]

    [25]

    Wang B Y, Xu W, Xing Z C 2009 Acta Phys. Sin. 58 6590 (in Chinese) [王宝燕, 徐伟, 邢真慈 2009 58 6590]

    [26]

    Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D 2009 PLoS Comput. Biol. 3 e156

    [27]

    Wang J, Chen L Q, Fei X Y 2007 Chaos Soliton. Fract. 31 247

    [28]

    Gai Y, Doiron B, Kotak V, Rinzel J 2009 J. Neurophysiol. 102 3447

    [29]

    Wang H T, Wang L F, Yu L C, Chen Y 2011 Phys. Rev. E 83 021915

    [30]

    Gai Y, Doiron B, Rinzel J 2010 PLoS Comput. Biol. 6 e1000825

    [31]

    Hilaire M, St Longtin A 2004 J. Comput. Neurosci. 16299

    [32]

    Izhikevich E M 2004 IEEE Trans. Neural Networ. 15 1063

    [33]

    Olypher A V, Prinz A A 2010 J. Comput. Neurosci. 8 20

    [34]

    Huber M T, Braun H A 2006 Phys. Rev. E 73 1

    [35]

    Tateno T, Robinson H P C 2005 J. Neurophysiol. 95 2650

    [36]

    Yang Z Q 2010 Acta Phys. Sin. 59 5319 (in Chinese) [杨卓琴 2010 59 5319]

    [37]

    Borisyuk A, Rinzel J 2005 Models and Methods in Neurophysics (Amsterdam: Elsevier) p29

    [38]

    Shi X, Lu Q S 2005 Chin. Phys. 14 77

    [39]

    Zhao D J, Zeng S Y, Zhang Z Z 2010 Chin. Phys. B 19 108701

    [40]

    Duan Y B, Hu S J, Xie Y, Xu J X, Kang Y M 2004 Chin. Phys. 13 1396

    [41]

    Yang Z Q, Lu Q S 2006 Chin. Phys. 15 518

    [42]

    Colwell L J, Brenner M P 2009 PLoS Comput. Biol. 5 e1000265

    [43]

    FitzHugh R 1961 Biophysical. J. 1 445

    [44]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE. 50 2061

    [45]

    Han C X, Wang J, Che Y Q, Deng B, Guo Y, Guo Y M, Liu Y Y 2010 Acta Phys. Sin. 59 5880 (in Chinese) [韩春晓, 王江, 车艳秋, 邓斌, 郭义, 郭永明, 刘阳阳 2010 59 5880]

  • [1]

    Arias C O 2008 International Archives of Medicine 1 2

    [2]

    Sewerin S, Taubert M, Vollmann H, Villringer A, Ragert P 2011 BMC Neurosci. 12 45

    [3]

    Casali A G, Casarotto S, Rosanova M, Mariptti M, Massimini M 2010 NeuroImage 49 1459

    [4]

    Pashut T, Wolfus S, Friedman A, Lavidor M, Bar G I, Yosef Y, Korngreen A 2011 PLoS Comput. Biol. 7 e1002022

    [5]

    Wagner T, Valero C A, Pascual L A 2007 Annu. Rev. Biomed. Eng. 9 1

    [6]

    Maki H 2011 Ph. D. Dissertation (Espoo: Aalto University)

    [7]

    Miniussi C, Ruzzoli M, Walsh V 2010 Cortex 46 128

    [8]

    Huang Y Z, Rothwell J C, Chen R S, Lu C S, Chuang W L 2011 Clin. Neurophysiol. 122 1011

    [9]

    Rossini P M, Rossini L, Ferreri F 2010 IEEE Eng. Med. Biol. 29 84

    [10]

    Kobayashi M, Leone A P 2003 Lancet Neurol. 2 145

    [11]

    Censor N, Cohen G L 2011 J. Physiol. 589 21

    [12]

    Prescott S A, Ratté S, Koninck Y D, Sejnowski T J 2006 J. Neurosci. 26 9084

    [13]

    Prescott S A, Ratté S, Koninck Y D, Sejnowski T J 2008 J. Neurophysiol. 100 3030

    [14]

    Toporikova N, Tabak J, Freeman M E, Bertram R 2008 Neural Comput. 20 436

    [15]

    Meng X Y, Lu Q S, Rinzel J 2011 J. Comput. Neurosci. 31 117

    [16]

    RIchardson M J E, Brunel N, Hakim V 2003 J. Neurophysiol. 89 2538

    [17]

    Trocme N F, Hansel D, Vreeswijk C V, Brunel N 2003 J. Neurosci. 23 11628

    [18]

    Zeberg H, Blomberg C, Arhem P 2010 PLoS Comput. Biol. 6 e1000753

    [19]

    Prescott S A, Koninck Y D, Sejnowski T J 2008 PLoS Comput. Biol. 4 e1000198

    [20]

    Hodgkin A, Huxley A 1952 J. Physiol. 117 500

    [21]

    Izhikevich E M 2005 Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting (Cambridge: The MIT Press) p1

    [22]

    Coggan J S, Prescott S A, Bartol T M, Sejnowski T J 2010 PNAS 107 20602

    [23]

    Xie Y, Aihara K, Kang Y M 2008 Phys. Rev. E 77 021917

    [24]

    Liu Y, Xie Y 2010 Acta Phys. Sin. 59 2147 (in Chinese) [刘勇, 谢勇 2010 59 2147]

    [25]

    Wang B Y, Xu W, Xing Z C 2009 Acta Phys. Sin. 58 6590 (in Chinese) [王宝燕, 徐伟, 邢真慈 2009 58 6590]

    [26]

    Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D 2009 PLoS Comput. Biol. 3 e156

    [27]

    Wang J, Chen L Q, Fei X Y 2007 Chaos Soliton. Fract. 31 247

    [28]

    Gai Y, Doiron B, Kotak V, Rinzel J 2009 J. Neurophysiol. 102 3447

    [29]

    Wang H T, Wang L F, Yu L C, Chen Y 2011 Phys. Rev. E 83 021915

    [30]

    Gai Y, Doiron B, Rinzel J 2010 PLoS Comput. Biol. 6 e1000825

    [31]

    Hilaire M, St Longtin A 2004 J. Comput. Neurosci. 16299

    [32]

    Izhikevich E M 2004 IEEE Trans. Neural Networ. 15 1063

    [33]

    Olypher A V, Prinz A A 2010 J. Comput. Neurosci. 8 20

    [34]

    Huber M T, Braun H A 2006 Phys. Rev. E 73 1

    [35]

    Tateno T, Robinson H P C 2005 J. Neurophysiol. 95 2650

    [36]

    Yang Z Q 2010 Acta Phys. Sin. 59 5319 (in Chinese) [杨卓琴 2010 59 5319]

    [37]

    Borisyuk A, Rinzel J 2005 Models and Methods in Neurophysics (Amsterdam: Elsevier) p29

    [38]

    Shi X, Lu Q S 2005 Chin. Phys. 14 77

    [39]

    Zhao D J, Zeng S Y, Zhang Z Z 2010 Chin. Phys. B 19 108701

    [40]

    Duan Y B, Hu S J, Xie Y, Xu J X, Kang Y M 2004 Chin. Phys. 13 1396

    [41]

    Yang Z Q, Lu Q S 2006 Chin. Phys. 15 518

    [42]

    Colwell L J, Brenner M P 2009 PLoS Comput. Biol. 5 e1000265

    [43]

    FitzHugh R 1961 Biophysical. J. 1 445

    [44]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE. 50 2061

    [45]

    Han C X, Wang J, Che Y Q, Deng B, Guo Y, Guo Y M, Liu Y Y 2010 Acta Phys. Sin. 59 5880 (in Chinese) [韩春晓, 王江, 车艳秋, 邓斌, 郭义, 郭永明, 刘阳阳 2010 59 5880]

  • [1] 贾美美, 曹佳伟, 白明明. 新型忆阻耦合异质神经元的放电模式和预定义时间混沌同步.  , 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872
    [2] 徐子恒, 何玉珠, 康艳梅. 基于随机放电神经元网络的彩色图像感知研究.  , 2022, 71(7): 070501. doi: 10.7498/aps.71.20211982
    [3] 吴静, 潘春宇. 感性神经元模型及其动力学特性研究.  , 2022, 71(4): 048701. doi: 10.7498/aps.71.20211626
    [4] 吴静, 潘春宇. 感性神经元模型及其动力学特性研究.  , 2021, (): . doi: 10.7498/aps.70.20211626
    [5] 谢盈, 朱志刚, 张晓锋, 任国栋. 光电流驱动下非线性神经元电路的放电模式控制.  , 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676
    [6] 于文婷, 张娟, 唐军. 动态突触、神经耦合与时间延迟对神经元发放的影响.  , 2017, 66(20): 200201. doi: 10.7498/aps.66.200201
    [7] 徐泠风, 李传东, 陈玲. 神经元模型对比分析.  , 2016, 65(24): 240701. doi: 10.7498/aps.65.240701
    [8] 于海涛, 王江. 基于反演自适应动态滑模的FitzHugh-Nagumo神经元混沌同步控制.  , 2013, 62(17): 170511. doi: 10.7498/aps.62.170511
    [9] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究.  , 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [10] 胡柏林, 马军, 李凡, 蒲忠胜. 神经元网络中分布式电流诱导靶波机理研究.  , 2013, 62(5): 058701. doi: 10.7498/aps.62.058701
    [11] 吴望生, 唐国宁. 不同耦合下混沌神经元网络的同步.  , 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [12] 王兴元, 任小丽, 张永雷. 参数未知神经元模型的全阶与降阶最优同步.  , 2012, 61(6): 060508. doi: 10.7498/aps.61.060508
    [13] 陈军, 李春光. 具有自适应反馈突触的神经元模型中的混沌:电路设计.  , 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [14] 陈军, 李春光. 禁忌学习神经元模型的电路设计及其动力学研究.  , 2011, 60(2): 020502. doi: 10.7498/aps.60.020502
    [15] 金淇涛, 王江, 魏熙乐, 邓斌, 车艳秋. 最小神经元模型放电起始动态控制与分析.  , 2011, 60(9): 098701. doi: 10.7498/aps.60.098701
    [16] 汪茂胜, 黄万霞, 崔执凤. 二维映射神经元模型中的相干双共振.  , 2010, 59(7): 4485-4489. doi: 10.7498/aps.59.4485
    [17] 刘志宏, 周玉荣, 张安英, 庞小峰. 色关联噪声驱动下非线性神经元模型的相干共振.  , 2010, 59(2): 699-704. doi: 10.7498/aps.59.699
    [18] 汪茂胜. 二维映射神经元模型中频率依赖的随机共振.  , 2009, 58(10): 6833-6837. doi: 10.7498/aps.58.6833
    [19] 王宝燕, 徐伟, 邢真慈. 外界电场激励下的耦合FitzHugh-Nagumo神经元系统的放电节律研究.  , 2009, 58(9): 6590-6595. doi: 10.7498/aps.58.6590
    [20] 王朝庆, 徐 伟, 张娜敏, 李海泉. 色噪声激励下的FHN神经元系统.  , 2008, 57(2): 749-755. doi: 10.7498/aps.57.749
计量
  • 文章访问数:  7550
  • PDF下载量:  566
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-29
  • 修回日期:  2012-06-04
  • 刊出日期:  2012-06-05

/

返回文章
返回
Baidu
map