搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静态偏振风成像干涉仪光传输特性和光通量改善

张宣妮 张淳民

引用本文:
Citation:

静态偏振风成像干涉仪光传输特性和光通量改善

张宣妮, 张淳民

The optical transmission and improvement of flux for the static polarization wind imaging interferometer

Zhang Xuan-Ni, Zhang Chun-Min
PDF
导出引用
  • 静态偏振风成像干涉仪利用偏振光束来获得干涉图, 光束在偏振元件中的传输特性成为分析研究的关键. Jones矩阵用于分析系统的光学传输特性和偏振态变化过程, 形式简洁,计算方便,容易得出光学元件对系统性能的影响.本文用Jones矩阵对静态偏振风成像干涉仪系统进行了描述, 推导出了适用于普遍情况的系统矩阵表达式,计算出核心偏振元件的偏振化方向和波片方位角对应于系统光通量和干涉调制度的关系,确定了系统中各偏振元件的最佳偏振化方向和波片的最佳方位角; 并通过视场展宽技术和提高四面角锥棱镜的透光率对光通量加以改善,利用光线追迹软件仿真, 对视场展宽前后的干涉强度作了对比,达到预期的效果.为静态偏振干涉成像光谱仪的设计、 研制和工程化提供重要理论和实践指导.
    The static polarization wind imaging interferometer takes advantage of polarized-light beam to obtain interferogram, and beam transmission characteristic in core polarization components is a key issue. The Jones matrix is convenient and concise for analyzing the optics polarization state, and easy to obtain the relationship of key optical components in the system performance. The Jones matrix is introduced to describe the static polarization interferometer system respectively in a given case and in a general case. The variations of optical flux and interference fringe visibility are investigated as functions of polarization direction and wave plate azimuth associated with the key components, and their optimal values are ascertained. The optical flux can be improved by widening field of view and increasing the transmittance of the pyramid prism. The simulation results of the interference intensities confirm the theoretical expectations.The study provides a theoretical basis and practical guidance for the design, development and engineer of the static polarization wind imaging interferometer.
    • 基金项目: 国家高技术研究发展计划(批准号: 2012AA121101, 2006AA12Z152)、 国家自然科学基金重点项目(批准号: 40537031)、 国家自然科学基金(批准号: 40375010,60278019)、国家重大科技专项 (批准号: E03101112JC02)、陕西省科技攻关项目(批准号: 2001K06-G12, 2005K04-G18)、 2010苏州大学省重点实验室专题项目(批准号: KJS1001)和陕西省教育厅科学研究计划项目(批准号: 09JK799)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant Nos. 2012AA121101, 2006AA12Z152), the State Key Program of National Natural Science Foundation of China (Grant No. 40537031), the National Natural Science Foundation of China (Grant Nos. 40875013, 40375010, 60278019), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. E03101112JC02), the Science and Technology Key Program of Shaanxi Province, China (Grant No. 2005K04-G18), the Topics of 2010 Provincial Key Laboratory of Suzhou University, China (Grant No. KJS1001), the Special Research Program of Shaanxi Education Department, China (Grant No. 09JK807), and Shannxi Province Education Department, China (Grant No. 09JK799).
    [1]

    Babcock D D 2006 Ph. D. Dissertation (Canada: York University)

    [2]

    Persky M J 1995 Rev. Sci. Instrum.66 4763

    [3]

    Hilliard R L, Shepherd G G 1966 J. Opt. Soc. Am. 56 362

    [4]

    Shepherd G G, Gault W A, Miller D W, Pasturczyk Z, Johnston S F, Kosteniuk P R, Haslett J W, Kendall D J W, Wimperis J R 1985 Appl. Opt. 24 1571

    [5]

    Zhang C M, Zhao B C, Yuan Z L, Huang W J 2009 J.Opt. A: Pure Appl. Opt. 11 085401

    [6]

    Zhang C M, He J 2006 Opt. Express 14 12561

    [7]

    Gault W A, Sargoytchev S, Brown S 2001 Proc. SPIE 4306 266

    [8]

    Bird J C, Liang F C, Solheim B H, Shepherd G G 1995 Meas. Sci. Technol. 6 1368

    [9]

    Ye J Y, Zhang C M, Zhao B C 2008 Acta Phys. Sin. 57 67 (in Chinese)[叶健勇, 张淳民, 赵葆常 2008 57 67]

    [10]

    Zhang C M, Zhu H C, Zhao B C 2011 Opt. Express 19 9626

    [11]

    Zhang C M, Zhu L Y 2010 Acta Phys. Sin. 59 989 (in Chinese) [张淳民, 朱兰艳 2010 59 989]

    [12]

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p57 (in Chinese) [廖延彪 2003 偏振光学(北京:科学出版社) 第57页]

    [13]

    Zhang C M, Zhao B C, Xiangli B 2003 Opt. Commun. 227 221

    [14]

    Bu Z C, Zhang C M, Zhao B C, Zhu H C 2009 Acta Phys. Sin. 58 2415 (in Chinese) [步志超, 张淳民, 赵葆常, 朱化春 2009 58 2415]

    [15]

    Zhang C M, Xiangli B, Zhao B C 2000 Proc. SPIE 4087 957

    [16]

    Zhang C M, Xiangli B, Zhao B C 2004 J. Opt. A: Pure Appl. Opt. 43 6090

    [17]

    Zhang C M, Zhao B C, Xiangli B, Li Y C 2006 OptiK 117 265

    [18]

    Thuillier G, Shepherd G G 1985 Appl. Opt. 24 1599

    [19]

    Thuillier G, Herse M 1991 Appl. Opt. 30 1210

    [20]

    Wang J C, Zhang C M, Zhao B C, Liu N 2010 Acta Phys. Sin. 59 1625 (in Chinese) [王金婵, 张淳民, 赵葆常, 刘宁 2010 59 1625]

    [21]

    Zhang C M, Zhao J K, Sun Y 2011 Appl. Opt. 50 3497

    [22]

    Zhang C M, Wu H Y, Li J 2011 Opt. Eng. 50 066201

    [23]

    Zhang C M. Mu T K 2011 Opt. Eng. 50 049701

  • [1]

    Babcock D D 2006 Ph. D. Dissertation (Canada: York University)

    [2]

    Persky M J 1995 Rev. Sci. Instrum.66 4763

    [3]

    Hilliard R L, Shepherd G G 1966 J. Opt. Soc. Am. 56 362

    [4]

    Shepherd G G, Gault W A, Miller D W, Pasturczyk Z, Johnston S F, Kosteniuk P R, Haslett J W, Kendall D J W, Wimperis J R 1985 Appl. Opt. 24 1571

    [5]

    Zhang C M, Zhao B C, Yuan Z L, Huang W J 2009 J.Opt. A: Pure Appl. Opt. 11 085401

    [6]

    Zhang C M, He J 2006 Opt. Express 14 12561

    [7]

    Gault W A, Sargoytchev S, Brown S 2001 Proc. SPIE 4306 266

    [8]

    Bird J C, Liang F C, Solheim B H, Shepherd G G 1995 Meas. Sci. Technol. 6 1368

    [9]

    Ye J Y, Zhang C M, Zhao B C 2008 Acta Phys. Sin. 57 67 (in Chinese)[叶健勇, 张淳民, 赵葆常 2008 57 67]

    [10]

    Zhang C M, Zhu H C, Zhao B C 2011 Opt. Express 19 9626

    [11]

    Zhang C M, Zhu L Y 2010 Acta Phys. Sin. 59 989 (in Chinese) [张淳民, 朱兰艳 2010 59 989]

    [12]

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p57 (in Chinese) [廖延彪 2003 偏振光学(北京:科学出版社) 第57页]

    [13]

    Zhang C M, Zhao B C, Xiangli B 2003 Opt. Commun. 227 221

    [14]

    Bu Z C, Zhang C M, Zhao B C, Zhu H C 2009 Acta Phys. Sin. 58 2415 (in Chinese) [步志超, 张淳民, 赵葆常, 朱化春 2009 58 2415]

    [15]

    Zhang C M, Xiangli B, Zhao B C 2000 Proc. SPIE 4087 957

    [16]

    Zhang C M, Xiangli B, Zhao B C 2004 J. Opt. A: Pure Appl. Opt. 43 6090

    [17]

    Zhang C M, Zhao B C, Xiangli B, Li Y C 2006 OptiK 117 265

    [18]

    Thuillier G, Shepherd G G 1985 Appl. Opt. 24 1599

    [19]

    Thuillier G, Herse M 1991 Appl. Opt. 30 1210

    [20]

    Wang J C, Zhang C M, Zhao B C, Liu N 2010 Acta Phys. Sin. 59 1625 (in Chinese) [王金婵, 张淳民, 赵葆常, 刘宁 2010 59 1625]

    [21]

    Zhang C M, Zhao J K, Sun Y 2011 Appl. Opt. 50 3497

    [22]

    Zhang C M, Wu H Y, Li J 2011 Opt. Eng. 50 066201

    [23]

    Zhang C M. Mu T K 2011 Opt. Eng. 50 049701

  • [1] 冯姣姣, 段美玲, 单晶, 王灵辉, 薛婷. 部分相干混合位错光束在生物组织传输中的偏振特性.  , 2024, 73(18): 184101. doi: 10.7498/aps.73.20240985
    [2] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体.  , 2021, (): . doi: 10.7498/aps.70.20211381
    [3] 卓宁泽, 张娜, 李博超, 李文铨, 何清洋, 施丰华, 朱月华, 邢海东, 王海波. TiO2微粒对远程荧光粉膜及白光发光二极管器件光色性能的影响.  , 2016, 65(5): 058501. doi: 10.7498/aps.65.058501
    [4] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响.  , 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [5] 刘绩林, 陈子阳, 张磊, 蒲继雄. 角向偏振无衍射光束的传输特性及其偏振态研究.  , 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [6] 王美洁, 贾维国, 张思远, 乔海龙, 杨军, 张俊萍, 门克内木乐. 拉曼效应对低双折射光纤偏振特性的影响.  , 2014, 63(10): 104204. doi: 10.7498/aps.63.104204
    [7] 赵顾颢, 赵尚弘, 幺周石, 郝晨露, 蒙文, 王翔, 朱子行, 刘丰. 偏振无关的旋光双反射结构的实验研究.  , 2013, 62(13): 134201. doi: 10.7498/aps.62.134201
    [8] 马骏, 袁操今, 冯少彤, 聂守平. 基于数字全息及复用技术的全场偏振态测试方法.  , 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [9] 钱可元, 马骏, 付伟, 罗毅. 基于Mie散射理论的白光发光二极管荧光粉散射特性研究.  , 2012, 61(20): 204201. doi: 10.7498/aps.61.204201
    [10] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究.  , 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [11] 徐昕伟, 崔碧峰, 朱彦旭, 郭伟玲, 李伟国. 利用介质光子晶体提高红光发光二极管的光通量的研究.  , 2012, 61(15): 154213. doi: 10.7498/aps.61.154213
    [12] 朱化春, 张淳民. 偏振风成像干涉仪多波长探测理论研究.  , 2011, 60(7): 074211. doi: 10.7498/aps.60.074211
    [13] 白鑫, 张淳民, 景春元, 关小伟, 曹芬, 李艳娜, 谢林利. 干涉成像光谱仪光通量的计算与分析.  , 2011, 60(7): 070703. doi: 10.7498/aps.60.070703
    [14] 邵旭萍, 龚天林, 陈艳, 陈景霞, 陈扬骎, 杨晓华. 不同载气下气体相对电离度的光谱诊断.  , 2010, 59(3): 1677-1680. doi: 10.7498/aps.59.1677
    [15] 刘宁, 张淳民, 王金婵, 穆廷魁. 新型静态偏振风成像干涉仪理论探测误差的分析与计算.  , 2010, 59(6): 4369-4379. doi: 10.7498/aps.59.4369
    [16] 张淳民, 朱兰艳. 新型偏振风成像干涉仪中偏振化方向对调制度和干涉强度的影响研究.  , 2010, 59(2): 989-997. doi: 10.7498/aps.59.989
    [17] 步志超, 张淳民, 赵葆常, 朱化春. 大视场消色差温度补偿型风成像干涉仪调制度的分析与计算.  , 2009, 58(4): 2415-2422. doi: 10.7498/aps.58.2415
    [18] 袁志林, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪信噪比研究.  , 2007, 56(11): 6413-6419. doi: 10.7498/aps.56.6413
    [19] 王 琛, 袁景和, 王桂英, 徐至展. 入射光的偏振特性对全内反射荧光显微术中荧光激发的影响.  , 2003, 52(12): 3014-3019. doi: 10.7498/aps.52.3014
    [20] 苏慧敏, 郑锡光, 王霞, 许剑锋, 汪河洲. 计算机模拟偏振对激光全息的影响.  , 2002, 51(5): 1044-1048. doi: 10.7498/aps.51.1044
计量
  • 文章访问数:  7406
  • PDF下载量:  578
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-11
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

/

返回文章
返回
Baidu
map