-
为校验次临界能源堆的概念设计,建立了贫化铀/聚乙烯球壳交替系统, 采用活化法测量238U的中子俘获率. 贫化铀片置于系统内与入射D离子束成90o的方向上活化 ,用HPGe探测器测量238U俘获中子衰变产生的239Np 衰变产生的277.6 keV特征射线计数,实验修正了贫铀片对277.6 keV 射线的自吸收, 得到了交替系统中238U (n, )反应率的径向分布,反应率的相对不确定度为3.5%3.7%, 并计算得到系统上整个贫铀区中238U的总中子俘获率为2.24 0.09. 用MCNP5程序在常用ENDF库下进行了模拟计算, 238U (n, )反应率分布计算与实验一般在5%以内符合, 总俘获率在1%以内符合.
-
关键词:
- 14 MeV中子 /
- 238U中子俘获 /
- 自吸收修正 /
- Monte-Carlo模拟
In order to check the conceptual design of subcritical reactor, an alternate depleted uranium/polyethylene-shell simulation device was established, to carry out uranium-238 neutron capture rate experiment using activation technique. The depleted uranium foils were activated at 90o to the incident. By measuring the 277.6 keV -ray emitted from 239Np generated by 238U (n, ) 239U reaction and correcting self-absorption of uranium experimentally, the 238U (n, ) reaction rate with an uncertainty between 3.5% and 3.7% and a total neutron capture of 2.24 0.09 of the system were obtained. The experiment was simulated using MCNP5 code with ENDF libraries. The simulations and measurements accord within 5% for the 238U (n, ) reaction rate and within 1% for the total neutron capture rate of 238U.-
Keywords:
- 14 MeV neutron /
- neutron capture of 238U /
- self-absorption correction /
- Monte Carlo simulation
[1] Shi X M, Peng X J 2010 Nucl. Power Eng. 31 5 (in Chinese) [师学明, 彭先觉 2010 核动力工程 31 5]
[2] Weale J W, Goodfellow H, McTaggart M H, Mullender M L 1961 J. Nucl. Energy 14 91
[3] Haight R C, Lee J D, Maniscalco J A 1976 Nucl. Sci. Eng. 61 53
[4] Akiyama M, Oka Y, Kanasugi K, Hashikura H, Kondo S 1987 Ann. Nucl. Energy 14 543
[5] Wang D L, Chen S H, Kang W, You Y, Huang W D, Zhang X Y 1997 Atom. Energy Sci. Technol. 31 229 (in Chinese) [王大伦, 陈素和, 亢武, 游泳, 黄卫东, 张秀岩 1997 核能科学与工程 31 229]
[6] ENDF/B-VI Decay Data, Joseph A C http: // t2. lanl. gov/data/ decayd. html [2011-05-20]
[7] Rajput M U, MacMahon T D 1995 J. Radioanal. Nucl. Chem. 189 51
[8] Quang E, Knoll G F 1992 Nucl. Sci. Eng. 110 282
[9] Bergmann U C, Chawla R, Jatuff F, Murphy M F 2006 Nucl. Instrum. Meth. A 556 331
[10] Koberl O, Seiler R, Chawla R 2004 Nucl. Sci. Eng. 146 1
[11] Cullen D E, Hubbel J H, Kissel L 1997 UCRL -50400 6 1
[12] Poenitz W P, Fawcett L R, Smith J, Smith D L 1981 Nucl. Sci. Eng. 78 239
[13] Dilorio G J, Poenitz W P 1982 Nucl. Instrum. Meth. 198 461
[14] Liu R, Lin L B, Wang D L, Li Y J, Jiang L, Chen S H, Wang M, Yang K 1999 Nucl. Electron. Detection Technol. 19 428 (in Chinese) [刘荣, 林理彬, 王大伦, 励义俊, 蒋励, 陈素和, 王玫, 杨可 1999 核电子学与探测技术 19 428]
[15] Takeshi S, Tatsuo N, Keiji K, Hironobu U 1999 J. Nucl. Sci. Technol. 36 661
-
[1] Shi X M, Peng X J 2010 Nucl. Power Eng. 31 5 (in Chinese) [师学明, 彭先觉 2010 核动力工程 31 5]
[2] Weale J W, Goodfellow H, McTaggart M H, Mullender M L 1961 J. Nucl. Energy 14 91
[3] Haight R C, Lee J D, Maniscalco J A 1976 Nucl. Sci. Eng. 61 53
[4] Akiyama M, Oka Y, Kanasugi K, Hashikura H, Kondo S 1987 Ann. Nucl. Energy 14 543
[5] Wang D L, Chen S H, Kang W, You Y, Huang W D, Zhang X Y 1997 Atom. Energy Sci. Technol. 31 229 (in Chinese) [王大伦, 陈素和, 亢武, 游泳, 黄卫东, 张秀岩 1997 核能科学与工程 31 229]
[6] ENDF/B-VI Decay Data, Joseph A C http: // t2. lanl. gov/data/ decayd. html [2011-05-20]
[7] Rajput M U, MacMahon T D 1995 J. Radioanal. Nucl. Chem. 189 51
[8] Quang E, Knoll G F 1992 Nucl. Sci. Eng. 110 282
[9] Bergmann U C, Chawla R, Jatuff F, Murphy M F 2006 Nucl. Instrum. Meth. A 556 331
[10] Koberl O, Seiler R, Chawla R 2004 Nucl. Sci. Eng. 146 1
[11] Cullen D E, Hubbel J H, Kissel L 1997 UCRL -50400 6 1
[12] Poenitz W P, Fawcett L R, Smith J, Smith D L 1981 Nucl. Sci. Eng. 78 239
[13] Dilorio G J, Poenitz W P 1982 Nucl. Instrum. Meth. 198 461
[14] Liu R, Lin L B, Wang D L, Li Y J, Jiang L, Chen S H, Wang M, Yang K 1999 Nucl. Electron. Detection Technol. 19 428 (in Chinese) [刘荣, 林理彬, 王大伦, 励义俊, 蒋励, 陈素和, 王玫, 杨可 1999 核电子学与探测技术 19 428]
[15] Takeshi S, Tatsuo N, Keiji K, Hironobu U 1999 J. Nucl. Sci. Technol. 36 661
计量
- 文章访问数: 8655
- PDF下载量: 638
- 被引次数: 0