-
熔石英亚表面划痕对入射激光的近场调制是导致光学元件低阈值损伤的主要因素之一. 用三维时域有限差分方法研究了连续横向划痕的近场分布, 对比了尖锐截面与光滑截面场调制的差异, 着重探讨了光场调制与划痕宽深比R的关系. 研究表明: 酸蚀后的光滑截面有助于减弱近场调制, 这类划痕的R10.0时调制较弱且相互接近, R5.0时调制显著增强. 当R取13时, 亚表面的调制达最大值, 最大电场幅值为入射波幅值的4.3倍. 当R取1.03.5时, 缺陷附近有80%以上取样点的最大电场幅值超过入射波幅值的2倍. 随着深度的增大, 强场区具有明显的趋肤效应: 位于划痕正下方的强场区首先往左右两侧移动, 然后移向抛物口界面以及水平界面, 同时衍生出的多条增强线诱导整个亚表面层的光场增强.Light intensification caused by cracks in fused silica subsurface is one of main factors of laser-induced damage to optical materials. Three-dimensional finite-difference time-domain method is used to simulate parabola-section-model lateral cracks. Moreover, the relationship between light intensification and breadth-to-depth ratioR is discussed. The results show that the morphology change after acid etching is an important cause of damage mitigation. Modulation is very weak and close to each other whenR is greater than 10.0 and it increases rapidly whenR less than 5.0. The electric field intensity reaches a maximal value whenR ranges from 1.0 to 3.0, and the maximal electric field is 4.3 V/m. The electric field intensity of more than 80% samples exceed 2 times than the incident light whenR ranges from 1.0 to 3.5. Intensified area has the skin effect with depth increasing. It is demonstrated that enhanced area lying directly below the crack firstly shifts to left and right sides, then it moves to parabola-section interface and the horizontal interface. Finally, the whole subsurface will be enhanced. In addition, electric field modulation firstly increases and then decreases in the z direction when depth is large enough.
-
Keywords:
- lateral crack /
- acid etching /
- finite-difference time-domain /
- laser irradiation
[1] Hua J R, Jiang X D, Zu X T 2010 High Power Laser and Particle Beams 22 1441 (in Chinese) [花金荣, 蒋晓东, 祖小涛 2010 强激光与粒子束 22 1441]
[2] Wang F R, Huang J, Liu H J, Zhou X D, Jiang X D, Wu W D, Zheng W G 2010 Acta Phys. Sin. 59 5122 (in Chinese) [王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国 2010 59 5122]
[3] Hua J R, Zu X T, Li L, Xiang X, Chen M, Jiang X D, Yuan X D, Zheng W G 2010 Acta Phys. Sin. 59 2519 (in Chinese) [花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国 2010 59 2519]
[4] Wong L, Suratwala T, Feit M D, Miller P E, Steele R 2009 J. Non-Cryst. Solids 355 797
[5] Bercegol H, Bouchut P R, Lamaignere L, Le Garrec B, Raze G 2004 Proc. SPIE 5273 312
[6] Camp D W, Kozlowski M R, Sheehan L M, Nichols M A, Dovik M, Raether R G, Thomas I M 1998 Proc. SPIE 3244 356
[7] Jiang Y, Yuan X D, Xiang X 2010 J. Optoelectron. Laser 21 1519 (in Chinese) [蒋勇, 袁晓东, 向霞 2010 光电子· 激光 21 1519]
[8] Chen M, Xiang X, Jiang Y 2010 High Power Laser and Particle Beams 22 1383 (in Chinese) [陈猛, 向霞, 蒋勇 2010 强激光与粒子束 22 1383]
[9] Suratwala T, Miller P E, Bude J, Steele W, Shen N, Monticelli M, Feit M D, Laurence T, Norton M, Carr C, Wong L 2011 J. Am. Ceram. Soc. 94 416
[10] Ge D B, Yan Y B 2005 FDTD Method for Electromagnetic Waves (Xi'an: Xidian University Press) pp67, 133 (in Chinese) [葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (西安: 西安电子科技大学出版社) 第67, 133页]
[11] Wang Y, Xu Q, Chai L Q 2005 High Power Laser and Particle Beams 17 67 (in Chinese) [王毅, 许乔, 柴立群 2005 强激光与粒子束 17 67]
[12] Duan L H 2004 J. Func. Mater. 35(Suppl.) 383 (in Chinese) [段利华 2004 功能材料 35(增刊) 383]
[13] Qiu S G, Wolfe J E, Monterrosa A M, Feit M D, Pistor T V, Stolz C J 2009 Proc. SPIE 7504 75040M
-
[1] Hua J R, Jiang X D, Zu X T 2010 High Power Laser and Particle Beams 22 1441 (in Chinese) [花金荣, 蒋晓东, 祖小涛 2010 强激光与粒子束 22 1441]
[2] Wang F R, Huang J, Liu H J, Zhou X D, Jiang X D, Wu W D, Zheng W G 2010 Acta Phys. Sin. 59 5122 (in Chinese) [王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国 2010 59 5122]
[3] Hua J R, Zu X T, Li L, Xiang X, Chen M, Jiang X D, Yuan X D, Zheng W G 2010 Acta Phys. Sin. 59 2519 (in Chinese) [花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国 2010 59 2519]
[4] Wong L, Suratwala T, Feit M D, Miller P E, Steele R 2009 J. Non-Cryst. Solids 355 797
[5] Bercegol H, Bouchut P R, Lamaignere L, Le Garrec B, Raze G 2004 Proc. SPIE 5273 312
[6] Camp D W, Kozlowski M R, Sheehan L M, Nichols M A, Dovik M, Raether R G, Thomas I M 1998 Proc. SPIE 3244 356
[7] Jiang Y, Yuan X D, Xiang X 2010 J. Optoelectron. Laser 21 1519 (in Chinese) [蒋勇, 袁晓东, 向霞 2010 光电子· 激光 21 1519]
[8] Chen M, Xiang X, Jiang Y 2010 High Power Laser and Particle Beams 22 1383 (in Chinese) [陈猛, 向霞, 蒋勇 2010 强激光与粒子束 22 1383]
[9] Suratwala T, Miller P E, Bude J, Steele W, Shen N, Monticelli M, Feit M D, Laurence T, Norton M, Carr C, Wong L 2011 J. Am. Ceram. Soc. 94 416
[10] Ge D B, Yan Y B 2005 FDTD Method for Electromagnetic Waves (Xi'an: Xidian University Press) pp67, 133 (in Chinese) [葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (西安: 西安电子科技大学出版社) 第67, 133页]
[11] Wang Y, Xu Q, Chai L Q 2005 High Power Laser and Particle Beams 17 67 (in Chinese) [王毅, 许乔, 柴立群 2005 强激光与粒子束 17 67]
[12] Duan L H 2004 J. Func. Mater. 35(Suppl.) 383 (in Chinese) [段利华 2004 功能材料 35(增刊) 383]
[13] Qiu S G, Wolfe J E, Monterrosa A M, Feit M D, Pistor T V, Stolz C J 2009 Proc. SPIE 7504 75040M
计量
- 文章访问数: 7907
- PDF下载量: 1286
- 被引次数: 0