搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

费米超流气体的非线性Rosen-Zener隧穿

蒙红娟 杨阳 王文元 祁鹏堂 马云云 马莹 王善进 段文山

引用本文:
Citation:

费米超流气体的非线性Rosen-Zener隧穿

蒙红娟, 杨阳, 王文元, 祁鹏堂, 马云云, 马莹, 王善进, 段文山

Nonlinear Rosen-Zener transition of Fermi superfluid gases

Meng Hong-Juan, Yang Yang, Wang Wen-Yuan, Qi Peng-Tang, Ma Yun-Yun, Ma Ying, Wang Shan-Jin, Duan Wen-Shan
PDF
导出引用
  • 以非线性Rosen-Zener隧穿理论为基础, 用平均场近似的方法, 通过考虑高阶非线性项的影响, 研究了非线性两能级系统中费米超流气体的Rosen-Zener隧穿现象. 研究发现粒子间的非线性相互作用能够显著地影响量子隧穿. 分别在快扫描极限和绝热极限的条件下, 解释了Rosen-Zener隧穿现象, 并给出了矩形振荡周期与非线性参数之间的依赖关系. 这为更深入认识费米气体的基本属性提供了理论基础.
    By considering the contribution of the higher order term representing the lowest approximation of beyond mean field correction and taking Roser-Zener tunneling as the underling process, we study the nonlinear Rosen-Zener transition of Fermi superfluid gas in a two-level system. We find that the nonlinearity can affect the quantun trasition in the fast scan limit and the adiabatic limit. We also derive the analytical expression for the of rectangular oscillation period dependent on nonlinear parameter. This provides a theoretical basis for a deeper understanding of the basis properties of Fermi gases.
      通信作者: 段文山, duanws@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:10725521,91021021,10875098)、国家重点基础研究发展计划(批准号:2007CB814800,2011CB921503)和西北师范大学自然科学基金(批准号:NWNU-KJCXGC-03-48)资助的课题.
      Corresponding author: Duan Wen-Shan, duanws@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10725521, 91021021, 10875098), the National Basic Research Program of China (Grant Nos. 2007CB814800, 2011CB921503), and the Natural Science Foundation of Northwest Normal University, China (Grant No. NWNU-KJCXGC-03-48).
    [1]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [2]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [3]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [4]

    DeMaico B, Jin D S 1999 Science 285 1703

    [5]

    Modugno G, Roati G, Riboli F, Ferlaino F, Brecha R J, Lnguscio M 2002 Science 297 2240

    [6]

    Regal C A, Ticknor C, Bohn J L, Jin D S 2003 Nature 424 47

    [7]

    Xiong H W, Lin S J, Zhang W P, Zhan M S 2005 Phys. Rev. Lett. 95 120401

    [8]

    Yuan D Q 2006 Acta Phys. Sin. 55 3912 (in Chinese)[袁都奇 2006 55 3912]

    [9]

    Men F D, Lin H, Zhu H Y 2008 Chin. Phys. B 17 3236

    [10]

    Qin F, Chen J S 2009 Chin. Phys. B 18 2654

    [11]

    Men F D, Liu H, Fan Z L, Zhu H Y 2009 Chin. Phys. B 18 2649

    [12]

    Fan Z L, Men F D, Dou R B 2010 Acta Phys. Sin. 59 3715 (in Chinese)[范召兰, 门福殿, 窦瑞波 2010 \ 59 3715]

    [13]

    Su G Z, Ou C J, Wang A Q P, Chen J C 2009 Chin. Phys. B 18 5189

    [14]

    Huang Z F, Ou C J, Chen J C 2009 Chin. Phys. B 18 1380

    [15]

    Rosen N, Zener C 1932 Phys. Rev. 40 502

    [16]

    Landau L D 1932 Phys. Z. Sowjetunion 2 46

    [17]

    Zener G 1932 Proc. R. Soc. London Ser. A 137 696

    [18]

    Kyoseva E S, Vitanov A I 2006 Phys. Rev. A 73 023420

    [19]

    Ye D F, Fu L B, Liu J 2008 Phys. Rev. A 77 013402

    [20]

    Ye D F, Fu L B, Liu J, Zhao H 2007 Acta Phys. Sin. 56 5071 (in Chinese)[叶地发, 傅立斌, 刘杰, 赵鸿 2007 56 5071]

    [21]

    Liu W M, Fan WB, Zheng W M, Liang J Q, Chui S T 2002 Phys. Rev. Lett. 88 170408

    [22]

    Wen W, Shen S Q, Huang G X 2010 Phys. Rev. B 81 014528

    [23]

    Ancilotto F, Salasnich L, Toigo F 2009 Phys. Rev. A 79 033627

    [24]

    Adhikari S K, Salasnich L 2008 Phys. Rev. A 78 043616

    [25]

    Adhikari S K, Salasnich L 2008 Phys. Rev. A 77 033618

    [26]

    Giorgini S, Pitaevskii L P, Stringeri S 2008 Rev. Mod. Phys. 80 1215

    [27]

    Adhikari S K, Lu H, Pu H 2009 Phys. Rev. A 80 063607

    [28]

    Liu J, Zhang C W, Raizen M G, Niu Q 2006 Phys. Rev. A 73 013601

    [29]

    Wang G F, Ye D F, Fu L B, Chen X Z, Liu J 2006 Phys. Rev. A 74 033414

    [30]

    Fu L B, Liu J 2006 Phys. Rev. A 73 063614

    [31]

    Tan WH, Yan K Z 2000 Acta Phys. Sin. 49 1909 (in Chinese)[谭维翰, 闫珂柱 2000 49 1909]

    [32]

    Wu Y, Yang X X 2007 Phys. Rev. Lett. 98 013601

    [33]

    Liu J, Fu L B, Ou B Y, Chen S G, Choi D I, Wu B, Niu Q 2002 Phys. Rev. A 66 023404

  • [1]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [2]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [3]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [4]

    DeMaico B, Jin D S 1999 Science 285 1703

    [5]

    Modugno G, Roati G, Riboli F, Ferlaino F, Brecha R J, Lnguscio M 2002 Science 297 2240

    [6]

    Regal C A, Ticknor C, Bohn J L, Jin D S 2003 Nature 424 47

    [7]

    Xiong H W, Lin S J, Zhang W P, Zhan M S 2005 Phys. Rev. Lett. 95 120401

    [8]

    Yuan D Q 2006 Acta Phys. Sin. 55 3912 (in Chinese)[袁都奇 2006 55 3912]

    [9]

    Men F D, Lin H, Zhu H Y 2008 Chin. Phys. B 17 3236

    [10]

    Qin F, Chen J S 2009 Chin. Phys. B 18 2654

    [11]

    Men F D, Liu H, Fan Z L, Zhu H Y 2009 Chin. Phys. B 18 2649

    [12]

    Fan Z L, Men F D, Dou R B 2010 Acta Phys. Sin. 59 3715 (in Chinese)[范召兰, 门福殿, 窦瑞波 2010 \ 59 3715]

    [13]

    Su G Z, Ou C J, Wang A Q P, Chen J C 2009 Chin. Phys. B 18 5189

    [14]

    Huang Z F, Ou C J, Chen J C 2009 Chin. Phys. B 18 1380

    [15]

    Rosen N, Zener C 1932 Phys. Rev. 40 502

    [16]

    Landau L D 1932 Phys. Z. Sowjetunion 2 46

    [17]

    Zener G 1932 Proc. R. Soc. London Ser. A 137 696

    [18]

    Kyoseva E S, Vitanov A I 2006 Phys. Rev. A 73 023420

    [19]

    Ye D F, Fu L B, Liu J 2008 Phys. Rev. A 77 013402

    [20]

    Ye D F, Fu L B, Liu J, Zhao H 2007 Acta Phys. Sin. 56 5071 (in Chinese)[叶地发, 傅立斌, 刘杰, 赵鸿 2007 56 5071]

    [21]

    Liu W M, Fan WB, Zheng W M, Liang J Q, Chui S T 2002 Phys. Rev. Lett. 88 170408

    [22]

    Wen W, Shen S Q, Huang G X 2010 Phys. Rev. B 81 014528

    [23]

    Ancilotto F, Salasnich L, Toigo F 2009 Phys. Rev. A 79 033627

    [24]

    Adhikari S K, Salasnich L 2008 Phys. Rev. A 78 043616

    [25]

    Adhikari S K, Salasnich L 2008 Phys. Rev. A 77 033618

    [26]

    Giorgini S, Pitaevskii L P, Stringeri S 2008 Rev. Mod. Phys. 80 1215

    [27]

    Adhikari S K, Lu H, Pu H 2009 Phys. Rev. A 80 063607

    [28]

    Liu J, Zhang C W, Raizen M G, Niu Q 2006 Phys. Rev. A 73 013601

    [29]

    Wang G F, Ye D F, Fu L B, Chen X Z, Liu J 2006 Phys. Rev. A 74 033414

    [30]

    Fu L B, Liu J 2006 Phys. Rev. A 73 063614

    [31]

    Tan WH, Yan K Z 2000 Acta Phys. Sin. 49 1909 (in Chinese)[谭维翰, 闫珂柱 2000 49 1909]

    [32]

    Wu Y, Yang X X 2007 Phys. Rev. Lett. 98 013601

    [33]

    Liu J, Fu L B, Ou B Y, Chen S G, Choi D I, Wu B, Niu Q 2002 Phys. Rev. A 66 023404

  • [1] 徐红萍, 贺真真, 鱼自发, 高吉明. 玻色-费米超流混合体系中的相互作用调制隧穿动力学.  , 2022, 71(9): 090301. doi: 10.7498/aps.71.20212168
    [2] 王娟, 张笑天, 武泽茂, 邓书金, 武海斌. 超冷6Li费米气体的密度涨落和亚泊松分布.  , 2020, 69(13): 136701. doi: 10.7498/aps.69.20200603
    [3] 姚绍武, 曹洪, 岑理相. 一类多能级Rosen-Zener模型的精确解.  , 2019, 68(13): 133201. doi: 10.7498/aps.68.20190353
    [4] 张恒, 王文元, 蒙红娟, 马莹, 马云云, 段文山. 玻色-费米混合气体的非线性Landau-Zener隧穿.  , 2013, 62(11): 110305. doi: 10.7498/aps.62.110305
    [5] 王文元, 杨阳, 蒙红娟, 马莹, 祁鹏堂, 马云云, 段文山. Fermi超流气体在unitarity区域和Bose-Einstein 凝聚区域的自俘获现象研究.  , 2012, 61(10): 100301. doi: 10.7498/aps.61.100301
    [6] 王建忠, 曹辉, 豆福全. 玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应.  , 2012, 61(22): 220305. doi: 10.7498/aps.61.220305
    [7] 蒙红娟, 苟学强, 王文元, 杨阳, 马莹, 马云云, 段文山. 费米超流气体在幺正极限区域的非线性Ramsey干涉.  , 2012, 61(19): 197301. doi: 10.7498/aps.61.197301
    [8] 马莹, 王苍龙, 王文元, 杨阳, 马云云, 蒙红娟, 段文山. 费米-费米散射长度对费米超流气体在幺正极限区域的隧穿现象影响.  , 2012, 61(18): 180303. doi: 10.7498/aps.61.180303
    [9] 王文元, 蒙红娟, 杨阳, 祁鹏堂, 马云云, 马莹, 段文山. 费米超流气体的非线性Landau-Zener 隧穿.  , 2012, 61(8): 087302. doi: 10.7498/aps.61.087302
    [10] 门福殿, 何晓刚, 周勇, 宋新祥. 强磁场中超冷费米气体的相对论效应.  , 2011, 60(10): 100502. doi: 10.7498/aps.60.100502
    [11] 杨树荣, 蔡宏强, 漆伟, 薛具奎. 光晶格中超流费米气体的能隙孤子.  , 2011, 60(6): 060304. doi: 10.7498/aps.60.060304
    [12] 王沙, 杨志安. 光子晶格中光束演化的二能级模型及非线性Landau-Zener隧穿.  , 2009, 58(6): 3699-3706. doi: 10.7498/aps.58.3699
    [13] 王沙, 杨志安. 二维周期光子晶格中的非线性Landau-Zener隧穿.  , 2009, 58(2): 729-733. doi: 10.7498/aps.58.729
    [14] 林恺, 杨树政. Vaidya-Bonner黑洞的费米子隧穿.  , 2009, 58(2): 744-748. doi: 10.7498/aps.58.744
    [15] 栗生长, 段文山. 两分量Bose-Einstein凝聚体的非线性Ramsey干涉.  , 2009, 58(7): 4396-4401. doi: 10.7498/aps.58.4396
    [16] 叶地发, 傅立斌, 赵 鸿, 刘 杰. 非线性Rosen-Zener跃迁.  , 2007, 56(9): 5071-5076. doi: 10.7498/aps.56.5071
    [17] 武宏宇, 尹 澜. 超流费米气体相滑移时的密度分布.  , 2006, 55(2): 490-493. doi: 10.7498/aps.55.490
    [18] 潘少华, 冯思民, 崔大复, 杨国桢. 隧穿展宽对超晶格子带间光吸收饱和的影响.  , 1993, 42(7): 1074-1079. doi: 10.7498/aps.42.1074-2
    [19] 潘少华;冯思民;崔大复;杨国祯. 隧穿展宽对超晶格子带间光吸收饱和的影响.  , 1991, 40(7): 1074-1079. doi: 10.7498/aps.40.1074
    [20] 倪皖荪. 自旋极化氢(H↓)超流气体吸附膜中声模式.  , 1983, 32(8): 1017-1026. doi: 10.7498/aps.32.1017
计量
  • 文章访问数:  7253
  • PDF下载量:  538
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-23
  • 修回日期:  2011-07-09
  • 刊出日期:  2012-03-05

/

返回文章
返回
Baidu
map