-
为了构造变系数非线性发展方程的无穷序列新精确解, 发掘第一种椭圆辅助方程的构造性和机械化性特点, 获得了该方程的 新类型解和相应的 Bcklund 变换. 在符号计算系统 Mathematica 的帮助下, 以第二类变系数 KdV 方程为应用实例, 构造了三种类型的无穷序列新精确解. 这里包括无穷序列光滑类孤子解、无穷序列尖峰孤立子解和无穷序列紧孤立子解. 这种方法也可以获得其他变系数非线性发展方程的无穷序列新精确解.
-
关键词:
- 第一种椭圆辅助方程 /
- Bcklund 变换 /
- 变系数非线性发展方程 /
- 无穷序列新精确解
To construct a number of new infinite sequence exact solutions of nonlinear evolution equations and to study the two characteristics of constructivity and mechanicalness of the first kind of elliptic equation, new types of solutions and the corresponding Bcklund transformation of the equation are presented. Then the second kind of KdV equation with variable coefficients is chosen as a practical example and three kinds of new infinite sequence exact solutions are obtained with the help of symbolic computation system Mathematica, where are included the smooth soliton-like solutions, the infinite sequence peak soliton solutions, and the infinite sequence compact soliton solutions. The method can be used to search for new infinite sequence exact solutions of other nonlinear evolution equations with variable coefficients.-
Keywords:
- the first kind of elliptic equation /
- Bcklund transformation /
- nonlinear evolution equation with variable coefficients /
- new infinite sequence exact solutions
[1] Liu S K, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 1923 (in Chinese)[刘式适, 付遵涛, 刘式达, 赵强 2002 51 1923]
[2] [3] Li D S, Zhang H Q 2003 Acta Phys. Sin. 52 1569 (in Chinese)[李德生, 张鸿庆 2003 52 1569]
[4] [5] Zhang J F, Chen F Y 2001 Acta Phys. Sin. 50 1648 (in Chinese)[张解放, 陈芳跃 2001 50 1648]
[6] [7] Zhu J M, Zheng C L, Ma Z Y 2004 Chin. Phys. 13 2008
[8] Lou S Y, Ruan H Y 1992 Acta Phys. Sin. 41 182 (in Chinese)[楼森岳, 阮航宇 1992 41 182]
[9] [10] Chan W L, Li K S 1989J. Math. Phys. 30 2521
[11] [12] [13] Tian C 1987 J. Phys. A: Math. Gen. 20 359
[14] [15] Zhang J L, Ren D F,Wang M L,Wang Y M, Fang Z D 2003 Chin. Phys. 12 825
[16] Zhang L, Zhang L F, Li C Y 2008 Chin. Phys. B 17 403
[17] [18] Zhao X Q, Zhi H Y, Zhang H Q 2006 Chin. Phys. 15 2202
[19] [20] [21] Wu H Y, Zhang L, Tan Y K, Zhou X T 2008 Acta Phys. Sin. 57 3312 (in Chinese)[吴海燕, 张亮, 谭言科, 周小滔 2008 57 3312]
[22] Taogetusang, Sirendaoerji 2010 Acta Phys. Sin. 59 4413 (in Chinese)[套格图桑, 斯仁道尔吉 2010 59 4413]
[23] [24] Camassa R, Holm D D 1993 Phys. Rev. Lett. 71 1661
[25] [26] [27] Rosenau P, Hyman J M 1993 Phys. Rev. Lett. 70 564
[28] [29] Dullin H R, Gottwald G A, Holm D D 2002 Phys. Rev. Lett. 87 4501
[30] [31] Guo B L, Liu Z R 2003 Science in China A 33 325 (in Chinese)[郭柏灵, 刘正荣 2003 中国科学 A 33 325]
[32] Yin J L, Tian L X 2009 Acta Phys. Sin. 58 3632 (in Chinese)[殷久利, 田立新 2009 58 3632]
[33] [34] Yu L Q, Tian L X 2006 Math. Practice. Theory 36 261 (in Chinese)[余丽琴, 田立新 2006 数学的实践与认识 36 261]
[35] [36] [37] Yu L Q, Tian L X 2005 Pure. Appl. Math 21 310 (in Chinese)[余丽琴, 田立新 2005 纯粹数学与应用数学 21 310]
[38] [39] Yan Z Y 2002 Chaos, Solitons and Fractals 14 1151
[40] [41] Yin J L, Tian L X 2007 Acta Math. Phys. 27A 027 (in Chinese)[殷久利, 田立新 2007 数学 27A 027]
[42] [43] Fan E G 2000 Phys. Lett. A 277 212
[44] Chen Y, Li B, Zhang H Q 2003 Chin. Phys. 12 940
[45] [46] Chen Y, Yan Z Y, Li B, Zhang H Q 2003 Chin. Phys. 12 1
[47] [48] [49] Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 137
[50] [51] Li D S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 143
[52] [53] Li D S, Zhang H Q 2004 Chin. Phys. 13 984
[54] [55] Li D S, Zhang H Q 2004 Chin. Phys. 13 1377
[56] [57] Chen H T, Zhang H Q 2004 Commun. Theor. Phys. (Beijing) 42 497
[58] Xie F D, Chen J, Lu Z S 2005 Commun. Theor. Phys. (Beijing) 43 585
[59] [60] [61] Xie F D, Yuan Z T 2005 Commun. Theor. Phys. (Beijing) 43 39
[62] Zhen X D, Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 647
[63] [64] LU Z S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 405
[65] [66] [67] Xie F D, Gao X S 2004 Commun. Theor. Phys. (Beijing) 41 353
[68] Chen Y, Li B 2004 Commun. Theor. Phys. (Beijing) 41 1
[69] [70] [71] Ma S H, Fang J P, Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese)[马松华, 方建平, 朱海平 2007 56 4319]
[72] [73] Ma S H, Wu X H, Fang J P, Zheng C L 2008 Acta Phys. Sin. 57 11 (in Chinese)[马松华, 吴小红, 方建平, 郑春龙 2008 57 11]
[74] [75] Pan Z H, Ma S H, Fang J P 2010 Chin. Phys. B 19 100301(1)
[76] [77] Qiang J Y, Ma S H, Fang J P 2010 Chin. Phys. B 19 090305(1)
[78] Taogetusang, Sirendaoerji, Li S M 2010 Chin. Phys. B 19 080303(1)
[79] [80] Taogetusang, Sirendaoerji, Wang Q P 2009 Acta Sci. J. Nat. Univ. NeiMongol 38 387 (in Chinese)[套格图桑, 斯仁道尔吉, 王庆鹏 2009 内蒙古师范大学学报 38 387]
[81] [82] [83] Taogetusang, Sirendaoerji 2010 Acta Phys. Sin. 59 5194 (in Chinese)[套格图桑, 斯仁道尔吉 2010 59 5194]
[84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] -
[1] Liu S K, Fu Z T, Liu S D, Zhao Q 2002 Acta Phys. Sin. 51 1923 (in Chinese)[刘式适, 付遵涛, 刘式达, 赵强 2002 51 1923]
[2] [3] Li D S, Zhang H Q 2003 Acta Phys. Sin. 52 1569 (in Chinese)[李德生, 张鸿庆 2003 52 1569]
[4] [5] Zhang J F, Chen F Y 2001 Acta Phys. Sin. 50 1648 (in Chinese)[张解放, 陈芳跃 2001 50 1648]
[6] [7] Zhu J M, Zheng C L, Ma Z Y 2004 Chin. Phys. 13 2008
[8] Lou S Y, Ruan H Y 1992 Acta Phys. Sin. 41 182 (in Chinese)[楼森岳, 阮航宇 1992 41 182]
[9] [10] Chan W L, Li K S 1989J. Math. Phys. 30 2521
[11] [12] [13] Tian C 1987 J. Phys. A: Math. Gen. 20 359
[14] [15] Zhang J L, Ren D F,Wang M L,Wang Y M, Fang Z D 2003 Chin. Phys. 12 825
[16] Zhang L, Zhang L F, Li C Y 2008 Chin. Phys. B 17 403
[17] [18] Zhao X Q, Zhi H Y, Zhang H Q 2006 Chin. Phys. 15 2202
[19] [20] [21] Wu H Y, Zhang L, Tan Y K, Zhou X T 2008 Acta Phys. Sin. 57 3312 (in Chinese)[吴海燕, 张亮, 谭言科, 周小滔 2008 57 3312]
[22] Taogetusang, Sirendaoerji 2010 Acta Phys. Sin. 59 4413 (in Chinese)[套格图桑, 斯仁道尔吉 2010 59 4413]
[23] [24] Camassa R, Holm D D 1993 Phys. Rev. Lett. 71 1661
[25] [26] [27] Rosenau P, Hyman J M 1993 Phys. Rev. Lett. 70 564
[28] [29] Dullin H R, Gottwald G A, Holm D D 2002 Phys. Rev. Lett. 87 4501
[30] [31] Guo B L, Liu Z R 2003 Science in China A 33 325 (in Chinese)[郭柏灵, 刘正荣 2003 中国科学 A 33 325]
[32] Yin J L, Tian L X 2009 Acta Phys. Sin. 58 3632 (in Chinese)[殷久利, 田立新 2009 58 3632]
[33] [34] Yu L Q, Tian L X 2006 Math. Practice. Theory 36 261 (in Chinese)[余丽琴, 田立新 2006 数学的实践与认识 36 261]
[35] [36] [37] Yu L Q, Tian L X 2005 Pure. Appl. Math 21 310 (in Chinese)[余丽琴, 田立新 2005 纯粹数学与应用数学 21 310]
[38] [39] Yan Z Y 2002 Chaos, Solitons and Fractals 14 1151
[40] [41] Yin J L, Tian L X 2007 Acta Math. Phys. 27A 027 (in Chinese)[殷久利, 田立新 2007 数学 27A 027]
[42] [43] Fan E G 2000 Phys. Lett. A 277 212
[44] Chen Y, Li B, Zhang H Q 2003 Chin. Phys. 12 940
[45] [46] Chen Y, Yan Z Y, Li B, Zhang H Q 2003 Chin. Phys. 12 1
[47] [48] [49] Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 137
[50] [51] Li D S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 143
[52] [53] Li D S, Zhang H Q 2004 Chin. Phys. 13 984
[54] [55] Li D S, Zhang H Q 2004 Chin. Phys. 13 1377
[56] [57] Chen H T, Zhang H Q 2004 Commun. Theor. Phys. (Beijing) 42 497
[58] Xie F D, Chen J, Lu Z S 2005 Commun. Theor. Phys. (Beijing) 43 585
[59] [60] [61] Xie F D, Yuan Z T 2005 Commun. Theor. Phys. (Beijing) 43 39
[62] Zhen X D, Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 647
[63] [64] LU Z S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 405
[65] [66] [67] Xie F D, Gao X S 2004 Commun. Theor. Phys. (Beijing) 41 353
[68] Chen Y, Li B 2004 Commun. Theor. Phys. (Beijing) 41 1
[69] [70] [71] Ma S H, Fang J P, Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese)[马松华, 方建平, 朱海平 2007 56 4319]
[72] [73] Ma S H, Wu X H, Fang J P, Zheng C L 2008 Acta Phys. Sin. 57 11 (in Chinese)[马松华, 吴小红, 方建平, 郑春龙 2008 57 11]
[74] [75] Pan Z H, Ma S H, Fang J P 2010 Chin. Phys. B 19 100301(1)
[76] [77] Qiang J Y, Ma S H, Fang J P 2010 Chin. Phys. B 19 090305(1)
[78] Taogetusang, Sirendaoerji, Li S M 2010 Chin. Phys. B 19 080303(1)
[79] [80] Taogetusang, Sirendaoerji, Wang Q P 2009 Acta Sci. J. Nat. Univ. NeiMongol 38 387 (in Chinese)[套格图桑, 斯仁道尔吉, 王庆鹏 2009 内蒙古师范大学学报 38 387]
[81] [82] [83] Taogetusang, Sirendaoerji 2010 Acta Phys. Sin. 59 5194 (in Chinese)[套格图桑, 斯仁道尔吉 2010 59 5194]
[84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165]
计量
- 文章访问数: 7759
- PDF下载量: 898
- 被引次数: 0