-
提出了一个新的三维自治混沌系统,并对系统的基本动力学特性进行了深入研究, 得到系统的Lyapunov指数和维数,给出了系统数值仿真图、Poincaré 映射图、Lyapunov指数谱和分岔图, 重点分析了不同参数变化对系统动力学行为的影响.最后,设计了该混沌系统的硬件电路并运用Multisim软件 对该电路进行仿真实现,数值仿真和电路仿真证实了该混沌系统与以往发现的混沌系统并不拓朴等价, 是一个新的混沌系统.
-
关键词:
- 混沌系统 /
- Lyapunov指数谱 /
- Poincaré 截面图 /
- 电路实现
In this paper, a novel three-dimensional autonomous chaotic system is reported. The dynamic properties of the new system are investigated via Lyapunov dimension, numerical simulation, Poincare diagrams, Lyapunov exponent spectrum and bifurcation diagrams. The different dynamic behaviors of the system are analyzed especially when each system parameter is changed. Finally, the circuit of this new chaotic system is designed and realized by Multisim software. The simulation results confirm that the chaotic system is different from the exisiting chaotic systems and is a novel chaotic system.-
Keywords:
- chaotic system /
- Lyapunov exponent spectrum /
- Poincaré diagrams /
- circuit realization
[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Lorenz E N 1993 The Essence of Chaos (Washington:University of Washington Press)
[3] Chen G R, Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[4] Celikovsky S, Chen G R 2002 Int. J. Bifur. Chaos 12 1789
[5] Lü J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659
[6] Lü J H, Chen G R, Cheng D Z 2002 Int. J. Bifur. Chaos 12 2917
[7] Chen G R, Lü J H 2003 Dynamics of the Lorenz System Family: Analysis,Control and Synchronization (Beijing: Science Press)p150 (in Chinese)[陈关荣,吕金虎 2003 Lorenz系统族的动力学分析、控制与同步(北京:科学出版社)第150页]
[8] Liu C X, Liu L, Liu K 2004 Chaos Soliton Fract. 22 1031
[9] Qi G Y, Du S, Chen G R 2005 Chaos Soliton Fract. 23 1671
[10] Zhao P D, Lj J, Zhang X D 2008 Acta Phys. Sin. 57 2791(in Chinese)[赵品栋,张晓丹 2008 57 2791]
[11] Hu G S 2009 Acta Phys. Sin. 58 8139 (in Chinese)[胡国四 2009 58 8139]
[12] Tang L R, Li J, Fan B 2009 Acta Phys. Sin. 58 1446 (in Chinese)[唐良瑞,李静,樊冰 2009 58 1446]
[13] Li C B,Wang D C 2009 Acta Phys. Sin. 58 764 (in Chinese)[李春彪,王德纯 2009 58 764]
[14] Li C B, Wang H K, Chen S 2010 Acta Phys. Sin. 59 783 (in Chinese)[李春彪,王翰康,陈谡 2010 59 783]
[15] Liu Z H 2006 Fundamentals and Applications of Chaotic Dynamics (Beijing: High Educatioin Press)p18 (in Chinese)[刘宗华 2006 混沌动力学基础及其应用(北京:高等教育出版社)第18页]
-
[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Lorenz E N 1993 The Essence of Chaos (Washington:University of Washington Press)
[3] Chen G R, Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[4] Celikovsky S, Chen G R 2002 Int. J. Bifur. Chaos 12 1789
[5] Lü J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659
[6] Lü J H, Chen G R, Cheng D Z 2002 Int. J. Bifur. Chaos 12 2917
[7] Chen G R, Lü J H 2003 Dynamics of the Lorenz System Family: Analysis,Control and Synchronization (Beijing: Science Press)p150 (in Chinese)[陈关荣,吕金虎 2003 Lorenz系统族的动力学分析、控制与同步(北京:科学出版社)第150页]
[8] Liu C X, Liu L, Liu K 2004 Chaos Soliton Fract. 22 1031
[9] Qi G Y, Du S, Chen G R 2005 Chaos Soliton Fract. 23 1671
[10] Zhao P D, Lj J, Zhang X D 2008 Acta Phys. Sin. 57 2791(in Chinese)[赵品栋,张晓丹 2008 57 2791]
[11] Hu G S 2009 Acta Phys. Sin. 58 8139 (in Chinese)[胡国四 2009 58 8139]
[12] Tang L R, Li J, Fan B 2009 Acta Phys. Sin. 58 1446 (in Chinese)[唐良瑞,李静,樊冰 2009 58 1446]
[13] Li C B,Wang D C 2009 Acta Phys. Sin. 58 764 (in Chinese)[李春彪,王德纯 2009 58 764]
[14] Li C B, Wang H K, Chen S 2010 Acta Phys. Sin. 59 783 (in Chinese)[李春彪,王翰康,陈谡 2010 59 783]
[15] Liu Z H 2006 Fundamentals and Applications of Chaotic Dynamics (Beijing: High Educatioin Press)p18 (in Chinese)[刘宗华 2006 混沌动力学基础及其应用(北京:高等教育出版社)第18页]
计量
- 文章访问数: 8656
- PDF下载量: 809
- 被引次数: 0