搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子隐形传态的数据链路层选择重传协议

杨小琳 周小清 赵晗 王朋朋

引用本文:
Citation:

基于量子隐形传态的数据链路层选择重传协议

杨小琳, 周小清, 赵晗, 王朋朋

Data link layer of selective repeat protocol based on quantum teleportation

Yang Xiao-Lin, Zhou Xiao-Qing, Zhao Han, Wang Peng-Peng
PDF
导出引用
  • 提出了数据链路层中基于量子隐形传态的量子选择重传协议.即在量子网络的两个站点进行通信时,发送方通过加入辅助量子比特位,把一系列的量子比特分成m帧.在连续传送m个量子帧后,接收方根据发送方所提供的经典信息,判断自己是否收到正确无误的量子帧.若接收方收到了正确的量子帧, 则用量子信道返回确认帧;若接收方没有收到量子帧或收到错误的量子帧, 则不返回否认帧.发送方在设定的时间内,根据收到的确认帧判断需要重发的量子帧.由于只重发丢失或出错的量子帧,该协议减少了通信过程的传播时延,提高了通信效率.在整个通信过程中,仅用经典信道传送测量信息,从而降低了经典信道的负担.
    In this paper we study the quantum selective repeat protocol of data link layer based on quantum teleportation. When two sites are communicating in the physical layer, the sender divides a series of qubits intom frames by adding auxiliary qubits. After continuously transmitting m quantum frames, the receiver judges whether he receives the correct quantum frame according to the classical information provided by the sender. If the receiver receives the correct quantum frames, he returns confirmed frames using the quantum channel. If the correct quantum frames are not received, the receiver does not return denial frames. The sender judges quantum frames which he must resend according to the received confirm frames in setting time. Because the sender resends only the quantum frames which are lost or mistaken, this protocol reduces the transmission delay and improves communication efficiency. In the entire course of communications, the classical channel is used only to transmit the survey information, thus its burden is reduced.
    • 基金项目: 湖南省自然科学基金(批准号: 11JJ3003)、湖南省科技计划项目(批准号:2010FJ3081)和吉首大学校级项目(批准号:09JDY005)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No: 11JJ3003), the Science and Technology Plan Foundation of Hunan Province, China(Grant No. 2010FJ3081), and the Subject of Jishou University(Grant No. 09JDY005).
    [1]

    Bernnett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Let. 70 1895

    [2]

    Sleator T, Weinfurter H 1995 Phys.Rev.Lett. 74 4087

    [3]

    Davidovich L, Zagury N, Brune M, Raimond J M, Haroche S 1994 Phys. Rev. A(R) 50 895

    [4]

    Vaidman L 1994 Phys. Rev. A 49 1473

    [5]

    Brassard G, MannA 1995 Phys. Rev. A 51 1727

    [6]

    Cirac J I, Parkins A S 1994 Phys. Rev. A 50 4441

    [7]

    Cirac J, Zoller P 1995 Phys. Rev. lett. 74 4091

    [8]

    Zheng S B, Guo G C 1997 Phys. Lett. A 232 171

    [9]

    Li W L, Li C F, Guo G C 2000 Phys. Rev. A 61 034301

    [10]

    Solano E, Cesar R L, Filho de Matos, Zagury N 2001 Eur. Phys. J. D 13 121

    [11]

    Ye L , Guo G C 2002 Chinese Physics 11 0996

    [12]

    Shi B S, Tomita A 2002 Phys. Lett. A 296 161

    [13]

    Dai H Y, Chen P X, Li C Z 2004 J. Opt. B 6 106

    [14]

    Dai H Y, Chen P X, Li C Z 2005 Commun. Theor Phys. 43 799

    [15]

    Wang G M, Ying M S P 2008 Phys. Rev. A 77 032324

    [16]

    Ishizaka S, Hiroshima T 2009 Phys. Rev. A 79 042306

    [17]

    Liu A Y, Wang Y W, Jiang X M, Zheng Y Z 2010 Chin. Phys. B 19 020307

    [18]

    Wang T Y, Wen Q Y 2011 Chin. Phys. B 20 040307

    [19]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [20]

    Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J, Poizik E S 1998 Science 282 706

    [21]

    Nielsen M A, Knill E, Laflamme R 1998 Nature 396 52

    [22]

    Kim Y H, Kulik S P, Shih Y H 2001 Phys. Rev. lett. 86 1370

    [23]

    Zhao Z, Pan J W 2004 Nature 430 54

    [24]

    Zhang Q, Goebel A, Wagenknecht C, Chen Y A, Zhao B, Yang T, Mair A, Schmiedmayer J, Pan J W 2006 Nature Physics 2 678

    [25]

    Zhou X Q, Wu Y W 2007 Acta Phys. Sin. 56 1881(in Chinese) [周小清, 邬云文 2007 56 1881]

    [26]

    Zhou X Q, Wu Y W 2010 Acta Photonica Sinica. 39 2093(in Chinese) [周小清, 邬云文 2010 光子学报 39 2093]

    [27]

    Zhou X Q, Wu Y W, Zhao H 2011 Acta Phys. Sin. 60 040304(in Chinese) [周小清,邬云文,赵晗 2011 60 040304]

    [28]

    Zhou N R, Zeng G H, Gong L H,Liu S Q 2007 Acta Phys.Sin. 56 5066 (in Chinese)[周南润, 曾贵华, 龚黎华, 刘三秋 2007 56 5066]

    [29]

    Zhou N R, Zeng B Y, Wang L J ,Gong L H 2010 Acta Phys. Sin. 59 2193 (in Chinese)[周南润, 曾宾阳, 王立军, 龚黎华 2010 59 2193]

    [30]

    Yang X L, Zhou X Q, Zhao H, Wang P P 2010 Journal of Jishou University 31 60 (in Chinese) [杨小琳, 周小清, 赵晗,王朋朋 2010 吉首大学学报 31 60]

    [31]

    Buzek V, Hillery M 1996 Phys. Rev. A 54 1844

    [32]

    Bruss D, DiVincenzo D P, Ekert A, Fuchs C A, Macchiavello C, Smolin J A 1998 Phys. Rev. A 57 2368

  • [1]

    Bernnett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Let. 70 1895

    [2]

    Sleator T, Weinfurter H 1995 Phys.Rev.Lett. 74 4087

    [3]

    Davidovich L, Zagury N, Brune M, Raimond J M, Haroche S 1994 Phys. Rev. A(R) 50 895

    [4]

    Vaidman L 1994 Phys. Rev. A 49 1473

    [5]

    Brassard G, MannA 1995 Phys. Rev. A 51 1727

    [6]

    Cirac J I, Parkins A S 1994 Phys. Rev. A 50 4441

    [7]

    Cirac J, Zoller P 1995 Phys. Rev. lett. 74 4091

    [8]

    Zheng S B, Guo G C 1997 Phys. Lett. A 232 171

    [9]

    Li W L, Li C F, Guo G C 2000 Phys. Rev. A 61 034301

    [10]

    Solano E, Cesar R L, Filho de Matos, Zagury N 2001 Eur. Phys. J. D 13 121

    [11]

    Ye L , Guo G C 2002 Chinese Physics 11 0996

    [12]

    Shi B S, Tomita A 2002 Phys. Lett. A 296 161

    [13]

    Dai H Y, Chen P X, Li C Z 2004 J. Opt. B 6 106

    [14]

    Dai H Y, Chen P X, Li C Z 2005 Commun. Theor Phys. 43 799

    [15]

    Wang G M, Ying M S P 2008 Phys. Rev. A 77 032324

    [16]

    Ishizaka S, Hiroshima T 2009 Phys. Rev. A 79 042306

    [17]

    Liu A Y, Wang Y W, Jiang X M, Zheng Y Z 2010 Chin. Phys. B 19 020307

    [18]

    Wang T Y, Wen Q Y 2011 Chin. Phys. B 20 040307

    [19]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [20]

    Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J, Poizik E S 1998 Science 282 706

    [21]

    Nielsen M A, Knill E, Laflamme R 1998 Nature 396 52

    [22]

    Kim Y H, Kulik S P, Shih Y H 2001 Phys. Rev. lett. 86 1370

    [23]

    Zhao Z, Pan J W 2004 Nature 430 54

    [24]

    Zhang Q, Goebel A, Wagenknecht C, Chen Y A, Zhao B, Yang T, Mair A, Schmiedmayer J, Pan J W 2006 Nature Physics 2 678

    [25]

    Zhou X Q, Wu Y W 2007 Acta Phys. Sin. 56 1881(in Chinese) [周小清, 邬云文 2007 56 1881]

    [26]

    Zhou X Q, Wu Y W 2010 Acta Photonica Sinica. 39 2093(in Chinese) [周小清, 邬云文 2010 光子学报 39 2093]

    [27]

    Zhou X Q, Wu Y W, Zhao H 2011 Acta Phys. Sin. 60 040304(in Chinese) [周小清,邬云文,赵晗 2011 60 040304]

    [28]

    Zhou N R, Zeng G H, Gong L H,Liu S Q 2007 Acta Phys.Sin. 56 5066 (in Chinese)[周南润, 曾贵华, 龚黎华, 刘三秋 2007 56 5066]

    [29]

    Zhou N R, Zeng B Y, Wang L J ,Gong L H 2010 Acta Phys. Sin. 59 2193 (in Chinese)[周南润, 曾宾阳, 王立军, 龚黎华 2010 59 2193]

    [30]

    Yang X L, Zhou X Q, Zhao H, Wang P P 2010 Journal of Jishou University 31 60 (in Chinese) [杨小琳, 周小清, 赵晗,王朋朋 2010 吉首大学学报 31 60]

    [31]

    Buzek V, Hillery M 1996 Phys. Rev. A 54 1844

    [32]

    Bruss D, DiVincenzo D P, Ekert A, Fuchs C A, Macchiavello C, Smolin J A 1998 Phys. Rev. A 57 2368

  • [1] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [2] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [3] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用.  , 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [4] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信.  , 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [5] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯.  , 2021, (): . doi: 10.7498/aps.70.20210907
    [6] 李熙涵. 量子直接通信.  , 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [7] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理.  , 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [8] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [9] 李申, 马海强, 吴令安, 翟光杰. 全光纤量子通信系统中的高速偏振控制方案.  , 2013, 62(8): 084214. doi: 10.7498/aps.62.084214
    [10] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信.  , 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [11] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议.  , 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [12] 周南润, 宋汉冲, 龚黎华, 刘晔. 基于GHZ态的三方量子确定性密钥分配协议.  , 2012, 61(21): 214203. doi: 10.7498/aps.61.214203
    [13] 周小清, 邬云文. 量子隐形传态网络的广播与组播.  , 2012, 61(17): 170303. doi: 10.7498/aps.61.170303
    [14] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源.  , 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [15] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略.  , 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.2
    [16] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [17] 王天银, 秦素娟, 温巧燕, 朱甫臣. 多方控制的量子安全直接通信协议的分析及改进.  , 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [18] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨.  , 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [19] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议.  , 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [20] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态.  , 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
计量
  • 文章访问数:  7667
  • PDF下载量:  535
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-16
  • 修回日期:  2011-04-11
  • 刊出日期:  2012-01-05

/

返回文章
返回
Baidu
map