-
The problem of solving a class of nonlinear disturbed Burgers equation is studied. Using the variational iteration method, a functional is introduced, then its variational is computed, and the iteration expansion is constructed. The soliton solutions of the approximate expansion are obtained from the corresponding equation.
-
Keywords:
- nonlinear /
- soliton /
- variational iteration /
- approximate solution
[1] MePhadem M J, Zhang D 2002 Power 415 603
[2] Gu D F, Philander S G H 1997 Science 275 805
[3] Ma S H, Qing J Y, Fang J P 2007 Commun. Theor. Phys. 48 662
[4] Loutsenko I 2006 Commun. Math. Phys. 268 465
[5] Gedalin M 1998 Phys. Piasmas 5 127
[6] Parkes E J 2008 Chaos Soliton. Fract. 38 154
[7] Parkes E J, Duffy B R 1996 Comput. Physt. Commun. 98 288
[8] Wang M L 1995 Phys. Lett. A 199 169
[9] He J H 2006 International J. Modern Phys. 20B 1141
[10] He J H 2002 Approxinate Nonlinear Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese) [何吉欢 2002 工程和科学计算中的近似非线性分析方法 (郑州: 河南科学技术出版社)]
[11] Ma S H, Fang J P, Ren Q B 2010 Acta Phys. Sin. 59 4420 (in Chinese) [马松华, 方建平, 任清褒 2010 59 4420]
[12] Ma S H, Fang J P, Hong B H, Zhang C L 2009 Chaos. Solitons and Fract. 40 1352
[13] Xu Y H, Mo J Q , Wen Z H 2011 Acta Phys. Sin. 60 050205 (in Chinese) [许永红, 莫嘉琪, 温朝晖 2011 60 050205]
[14] Mo J Q , Lin W T 2005 Chin. Phys. 14 875
[15] Mo J Q , Wang H, Lin W T 2006 Chin. Phys. 15 1450
[16] Wu Q K 2011 Acta Phys. Sin. 60 068802 (in Chinese) [吴钦宽 2011 60 068802]
[17] Huang N N 1996 Theory of Solition and Method of Perturbations (Shanghai: Shanghai Scientific and Technologicai Education Publishing House) (in Chinese) [黄念宁 1996 孤子理论和扰动方法(上海: 上海科技教育出版社)]
[18] Yousefi S A, Dehgha M 2010 Int. J. Comout. Math. 87 1299
[19] Hemeda A A 2009 Chaos, Solitons and Fract. 39 1297
[20] Abassy T A 2010 Comput. Math Appl. 59 912
[21] Song L N, Wang Q, Zhang H Q 2009 J. Comout. Appl. Math. 224 210
[22] Shi L F, Zhou X C 2010 Acta Phys. Sin. 59 2915 (in Chinese) [石兰芳, 周先春 2010 59 2915]
[23] Zhang G X, Li Z B, Duan Y S 2000 Science in China A 12 1103
-
[1] MePhadem M J, Zhang D 2002 Power 415 603
[2] Gu D F, Philander S G H 1997 Science 275 805
[3] Ma S H, Qing J Y, Fang J P 2007 Commun. Theor. Phys. 48 662
[4] Loutsenko I 2006 Commun. Math. Phys. 268 465
[5] Gedalin M 1998 Phys. Piasmas 5 127
[6] Parkes E J 2008 Chaos Soliton. Fract. 38 154
[7] Parkes E J, Duffy B R 1996 Comput. Physt. Commun. 98 288
[8] Wang M L 1995 Phys. Lett. A 199 169
[9] He J H 2006 International J. Modern Phys. 20B 1141
[10] He J H 2002 Approxinate Nonlinear Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese) [何吉欢 2002 工程和科学计算中的近似非线性分析方法 (郑州: 河南科学技术出版社)]
[11] Ma S H, Fang J P, Ren Q B 2010 Acta Phys. Sin. 59 4420 (in Chinese) [马松华, 方建平, 任清褒 2010 59 4420]
[12] Ma S H, Fang J P, Hong B H, Zhang C L 2009 Chaos. Solitons and Fract. 40 1352
[13] Xu Y H, Mo J Q , Wen Z H 2011 Acta Phys. Sin. 60 050205 (in Chinese) [许永红, 莫嘉琪, 温朝晖 2011 60 050205]
[14] Mo J Q , Lin W T 2005 Chin. Phys. 14 875
[15] Mo J Q , Wang H, Lin W T 2006 Chin. Phys. 15 1450
[16] Wu Q K 2011 Acta Phys. Sin. 60 068802 (in Chinese) [吴钦宽 2011 60 068802]
[17] Huang N N 1996 Theory of Solition and Method of Perturbations (Shanghai: Shanghai Scientific and Technologicai Education Publishing House) (in Chinese) [黄念宁 1996 孤子理论和扰动方法(上海: 上海科技教育出版社)]
[18] Yousefi S A, Dehgha M 2010 Int. J. Comout. Math. 87 1299
[19] Hemeda A A 2009 Chaos, Solitons and Fract. 39 1297
[20] Abassy T A 2010 Comput. Math Appl. 59 912
[21] Song L N, Wang Q, Zhang H Q 2009 J. Comout. Appl. Math. 224 210
[22] Shi L F, Zhou X C 2010 Acta Phys. Sin. 59 2915 (in Chinese) [石兰芳, 周先春 2010 59 2915]
[23] Zhang G X, Li Z B, Duan Y S 2000 Science in China A 12 1103
计量
- 文章访问数: 6986
- PDF下载量: 506
- 被引次数: 0