-
采用基于密度泛函理论的平面波超软赝势法研究了Magnli相亚氧化钛Ti8O15的电子结构和光学性能. 计算出的能带结构显示Ti8O15相比锐钛型TiO2禁带宽度大幅度降低. 态密度分析表明, 其原因在于Ti8O15的O原子的2p轨道以及Ti原子的3p, 3d轨道相对于TiO2的相应轨道向左产生了偏移, 同时由于O原子的缺失使得Ti原子的3d, 3p轨道多余电子在Fermi能级附近聚集形成新的电子能级. 态密度分析结果还显示, 相对于TiO2, Ti8O15 Fermi能级附近电子格局发生了如下变化: O原子的2p轨道电子贡献减少, Ti原子的3d轨道的电子对Fermi能级贡献增大. 光吸收计算图谱表明, TiO2仅在紫外光区有较高的光吸收能力, 而Ti8O15由于禁带宽度变窄引起光吸收范围红移到可见光区, 从而在紫外光区和可见光区都有较高的光吸收能力, 计算结果与实验得到的紫外-可见漫反射吸收光谱结果一致.
-
关键词:
- 第一性原理 /
- Magnli相亚氧化钛Ti8O15 /
- 电子结构 /
- 光学性能
The electronic structure and the optical properties of Magnli phase titanium suboxide Ti8O15 are studied by using the plane-wave ultrasoft pesudopotential method based on the density functional theory. The band structure reveals that the energy band gap of Ti8O15 is reduced a lot compared with that of anatase TiO2, which is due to the fact that O 2p, Ti 3p and Ti 3d of Ti8O15 shift toward the left compared with those of TiO2, and a new electron energy level formed by the redundant electrons of Ti 3d and Ti 3p of Ti8O15 due to the lack of oxygen atom in lattice. The results from DOS analysis show that electron distribution near the Fermi level of Ti8O15 is different from that of anatase TiO2, contribution of O 2p to Fermi level decreases and that of Ti 3d increases. Compared with anatase TiO2 which only has high ultraviolet light absorption, Ti8O15 has high light absorptivity both in ultraviolet spectrum and visible spectrum, because its narrow forbidden band width results in the red shift toward visible-light region. The light absorptivity calculated results are consistent with those from UV-vis diffuse absorption test results of anatase TiO2 and Magnli phase titanium suboxides.-
Keywords:
- first principles /
- Magnli phase titanium suboxides Ti8O15 /
- electronic structure /
- optical properties
[1] Marezio M, Dernier P D 1971 Solids State Chem. 3 430
[2] Siracusano S, Baglio V, D’Urso C, Aric`o A S 2009 Electrochim. Acta 54 6292
[3] Mohammad A R D, Zhang G Q, Ostrovski O 2009 Metal. Mater. Trans. 40 B62
[4] Hayfield P C , Hill A 2000 Int. J. Restorat. Build. Monuments 6 647
[5] Han W Q, Wang X L 2010 Appl. Phys. Lett. 97 243104-1
[6] Walsh F C, Wills R G A 2010 Electrochim. Acta 55 6342
[7] Banakh O, Schmid P E, Sanjinés R, Lévy F 2002 Surf. Coat. Technol. 272 151
[8] Yao J K, Shao J D, He H B, Fan Z X 2007 Vacuum 81 1023
[9] Gusev A A, Avvakumov E G, Vinokurova O B 2003 Sci. Sinter. 35 141
[10] Wang Y, Qin Y, Li G C, Cui Z L, Zhang Z K 2005 Cryst. Growth 282 402
[11] Chen G, Bare S, Mallouk T 2002 Electrochem. Soc. 49 A1092
[12] Ioroi T, Senoh H, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K 2008 J. Electrochem. Soc. 4 B321
[13] Magneli A, Anderson S, Collen B, Kuylenstierna U 1957 Acta Chem. Scand. 11 1641
[14] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese) [侯清玉, 张跃, 张涛 2008 57 1862]
[15] Hou Q Y, Zhang Y, Chen Y, Shang J X, Gu J H 2008 Acta Phys. Sin. 57 438 (in Chinese) [侯清玉, 张跃, 陈粤, 尚家香, 谷景华 2008 57 438]
[16] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 3155 (in Chinese) [侯清玉, 张跃, 张涛 2008 57 3155]
[17] Xu L, Tang C Q, Qian J 2009 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2009 59 2721]
[18] Liborio L, Harrison N 2008 Phys. Rev. B: Condens. Matter 77 104104
[19] Segal M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2127
[20] Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 59 4930]
[21] Walsh F C, Wills R G A 2010 Electrochim. Acta 55 6342
-
[1] Marezio M, Dernier P D 1971 Solids State Chem. 3 430
[2] Siracusano S, Baglio V, D’Urso C, Aric`o A S 2009 Electrochim. Acta 54 6292
[3] Mohammad A R D, Zhang G Q, Ostrovski O 2009 Metal. Mater. Trans. 40 B62
[4] Hayfield P C , Hill A 2000 Int. J. Restorat. Build. Monuments 6 647
[5] Han W Q, Wang X L 2010 Appl. Phys. Lett. 97 243104-1
[6] Walsh F C, Wills R G A 2010 Electrochim. Acta 55 6342
[7] Banakh O, Schmid P E, Sanjinés R, Lévy F 2002 Surf. Coat. Technol. 272 151
[8] Yao J K, Shao J D, He H B, Fan Z X 2007 Vacuum 81 1023
[9] Gusev A A, Avvakumov E G, Vinokurova O B 2003 Sci. Sinter. 35 141
[10] Wang Y, Qin Y, Li G C, Cui Z L, Zhang Z K 2005 Cryst. Growth 282 402
[11] Chen G, Bare S, Mallouk T 2002 Electrochem. Soc. 49 A1092
[12] Ioroi T, Senoh H, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K 2008 J. Electrochem. Soc. 4 B321
[13] Magneli A, Anderson S, Collen B, Kuylenstierna U 1957 Acta Chem. Scand. 11 1641
[14] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese) [侯清玉, 张跃, 张涛 2008 57 1862]
[15] Hou Q Y, Zhang Y, Chen Y, Shang J X, Gu J H 2008 Acta Phys. Sin. 57 438 (in Chinese) [侯清玉, 张跃, 陈粤, 尚家香, 谷景华 2008 57 438]
[16] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 3155 (in Chinese) [侯清玉, 张跃, 张涛 2008 57 3155]
[17] Xu L, Tang C Q, Qian J 2009 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2009 59 2721]
[18] Liborio L, Harrison N 2008 Phys. Rev. B: Condens. Matter 77 104104
[19] Segal M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2127
[20] Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 59 4930]
[21] Walsh F C, Wills R G A 2010 Electrochim. Acta 55 6342
计量
- 文章访问数: 7309
- PDF下载量: 765
- 被引次数: 0