-
文章基于蓝宝石衬底采用脉冲金属有机物化学气相淀积(MOCVD)法生长的高迁移率InAlN/GaN材料,其霍尔迁移率在室温和77 K下分别达到949和2032 cm2/Vs,材料中形成了二维电子气(2DEG). 进一步引入1.2 nm的AlN界面插入层形成InAlN/AlN/GaN结构,则霍尔迁移率在室温和77 K下分别上升到1437和5308 cm2/Vs. 分析样品的X射线衍射、原子力显微镜测试结果以及脉冲MOCVD生长方法的特点,发现InAlN/GaN材料的结晶质量较高,与GaN晶格匹配的InAlN材料具有平滑的表面和界面. InAlN/GaN和InAlN/AlN/GaN材料形成高迁移率特性的主要原因归结为形成了密度相对较低(1.610131.81013 cm-2)的2DEG,高质量的InAlN晶体降低了组分不均匀分布引起的合金无序散射,以及2DEG所在界面的粗糙度较小,削弱了界面粗糙度散射.
-
关键词:
- InAlN/GaN /
- 脉冲金属有机物化学气相淀积 /
- 二维电子气 /
- 迁移率
InAlN can be in-plane lattice matched (LM) to GaN, and the formed InAlN/GaN heterostructure is one kind of materials with high conductivity to be used in GaN-based high electron mobility transistors (HEMTs). It is reported that the high-mobility InAlN/GaN material is grown by using pulsed metal organic chemical vapor deposition (PMOCVD) on sapphire, and the Hall electron mobility reaches 949 and 2032 cm2/Vs at room temperature and 77 K, respectively. The two-dimensional electron gas (2DEG) is formed in the sample. When 1.2 nm thick AlN space layer is inserted to form InAlN/AlN/GaN structure, the Hall electron mobility increases to 1437 and 5308 cm2/Vs at room temperature and 77 K, respectively. It is shown by analyzing the results of X-ray diffraction and atomic force microscopy and the features of PMOCVD that the crystal quality of InAlN/GaN material is quite high, and the InAlN layer LM to GaN has smooth surface and interface. The high mobility characteristics of InAlN/GaN and InAlN/AlN/GaN materials are ascribed to the fact that the 2DEG has a comparatively low sheet density (1.61013-1.81013 cm-2), the alloy disorder scattering is weakened in the high-quality InAlN crystal since its compositions are evenly distributed, and the interface roughness scattering is alleviated at the smooth interface where the 2DEG is located.-
Keywords:
- InAlN/GaN /
- pulsed metal organic chemical vapor deposition /
- two-dimensional electron gas /
- mobility
[1] Kuzmik J, Pozzovivo G, Ostermaier C, Strasser G, Pogany D, Gornik E, Carlin J F, Gonschorek M, Feltin E, Grandjean N 2009 J. Appl. Phys. 106 124503
[2] Li R F, Yang R X, Wu Y B, Zhang Z G, Xu N Y, Ma Y Q 2008 Acta Phys. Sin. 57 2450 (in Chinese) [李若凡、杨瑞霞、武一宾、张志国、许娜颖、马永强 2008 57 2450]
[3] [4] [5] Kuzmik J 2001 IEEE Electron. Dev. Lett. 22 510
[6] [7] Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N 2006 Appl. Phys. Lett. 89 062106
[8] [9] Katz O, Mistele D, Meyler B, Bahir G, J. Salzman 2004 Electron. Lett. 40 1304
[10] [11] Karpov S Y, Podolskaya N, Zhmakin I A, Zhmakin A I 2004 Phys. Rev. B 70 235203
[12] [13] Ferhat M, Bechstedt F 2002 Phys. Rev. B 65 075213
[14] Kuzmik J, Carlin J F, Gonschorek M, Kostopoulos A, Konstantinidis G, Pozzovivo G, Golka S, Georgakilas A, Grandjean N, Strasser G, Pogany D, 2007 Phys. Stat. Sol. (a) 204 2019
[15] [16] [17] Xie J Q, Ni X F, Wu M, Leach J H, zgr V, Morko H 2007 Appl. Phys. Lett. 91 132116
[18] [19] Miyoshi M, Kuraoka Y, Tanaka M, Egawa T 2008 Appl. Phys. Express 1 081102
[20] [21] Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707
[22] Ni J Y, Hao Y, Zhang J C, Duan H T, Zhang J F 2009 Acta Phys. Sin. 58 4925 (in Chinese) [倪金玉、郝 跃、张进成、段焕涛、张金风 2009 58 4925]
[23] [24] [25] Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Shi L Y, Wang H, Yang L A, Zhang J F 2011 J. Cryst. Growth 314 359
[26] [27] Shur M, Gelmont B, Khan M A 1996 J. Electron. Mater. 25 777
[28] Liu B, Yin J Y, Li J, Feng Z H, Feng Z, Cai S J 2008 Proceedings of 15th National Conferance on Compound Semiconductor Materials, Microwave Devices and Optoelectronic Derices, Guangzhou, p54 (in Chinese) [刘 波、尹甲运、李 佳、冯志宏、冯 震、蔡树军 2008 第十五届全国化合物半导体、微波器件和光电器件学术会议论文集 广州 第54页]
[29] [30] [31] Jeganathan K, Shimizu M, Okumura H, Yano Y, Akutsu N 2007 J. Cryst. Growth 304 342
[32] [33] Dadgar A, Schulze F, Blsing J, Diez A, Krost A, Neuburger M, Kohn E, Daumiller I, Kunze M 2004 Appl. Phys. Lett. 85 5400
[34] Yu L S 2006 Physics of Semiconductor Heterojunctions (2nd Edition) (Beijing: Science Press) p141 (in Chinese) [虞丽生 2006 半导体异质结物理(第二版) (北京: 科学出版社) 第141页]
[35] [36] Jena D, Smorchkova I, Gossard A C, Mishra U K 2001 Phys. Stat. Sol. (b) 228 617
[37] [38] Antoszewski J, Gracey M, Dell J M, Faraone L, Fisher T A, Parish G, Wu Y F, Mishra U K 2000 J. Appl. Phys. 87 3900
[39] [40] Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M 1997 Appl. Phys. Lett. 71 1504
[41] [42] Bastard G 1983 Appl. Phys. Lett. 43 591
[43] [44] [45] Ferry D K, Goodnick S M 1999 Transport in Nanostructures (Cambridge: Cambridge University Press)
[46] [47] Zhang J F, Mao W, Zhang J C, Hao Y 2008 Chin. Phys. B 17 2689
-
[1] Kuzmik J, Pozzovivo G, Ostermaier C, Strasser G, Pogany D, Gornik E, Carlin J F, Gonschorek M, Feltin E, Grandjean N 2009 J. Appl. Phys. 106 124503
[2] Li R F, Yang R X, Wu Y B, Zhang Z G, Xu N Y, Ma Y Q 2008 Acta Phys. Sin. 57 2450 (in Chinese) [李若凡、杨瑞霞、武一宾、张志国、许娜颖、马永强 2008 57 2450]
[3] [4] [5] Kuzmik J 2001 IEEE Electron. Dev. Lett. 22 510
[6] [7] Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N 2006 Appl. Phys. Lett. 89 062106
[8] [9] Katz O, Mistele D, Meyler B, Bahir G, J. Salzman 2004 Electron. Lett. 40 1304
[10] [11] Karpov S Y, Podolskaya N, Zhmakin I A, Zhmakin A I 2004 Phys. Rev. B 70 235203
[12] [13] Ferhat M, Bechstedt F 2002 Phys. Rev. B 65 075213
[14] Kuzmik J, Carlin J F, Gonschorek M, Kostopoulos A, Konstantinidis G, Pozzovivo G, Golka S, Georgakilas A, Grandjean N, Strasser G, Pogany D, 2007 Phys. Stat. Sol. (a) 204 2019
[15] [16] [17] Xie J Q, Ni X F, Wu M, Leach J H, zgr V, Morko H 2007 Appl. Phys. Lett. 91 132116
[18] [19] Miyoshi M, Kuraoka Y, Tanaka M, Egawa T 2008 Appl. Phys. Express 1 081102
[20] [21] Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707
[22] Ni J Y, Hao Y, Zhang J C, Duan H T, Zhang J F 2009 Acta Phys. Sin. 58 4925 (in Chinese) [倪金玉、郝 跃、张进成、段焕涛、张金风 2009 58 4925]
[23] [24] [25] Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Shi L Y, Wang H, Yang L A, Zhang J F 2011 J. Cryst. Growth 314 359
[26] [27] Shur M, Gelmont B, Khan M A 1996 J. Electron. Mater. 25 777
[28] Liu B, Yin J Y, Li J, Feng Z H, Feng Z, Cai S J 2008 Proceedings of 15th National Conferance on Compound Semiconductor Materials, Microwave Devices and Optoelectronic Derices, Guangzhou, p54 (in Chinese) [刘 波、尹甲运、李 佳、冯志宏、冯 震、蔡树军 2008 第十五届全国化合物半导体、微波器件和光电器件学术会议论文集 广州 第54页]
[29] [30] [31] Jeganathan K, Shimizu M, Okumura H, Yano Y, Akutsu N 2007 J. Cryst. Growth 304 342
[32] [33] Dadgar A, Schulze F, Blsing J, Diez A, Krost A, Neuburger M, Kohn E, Daumiller I, Kunze M 2004 Appl. Phys. Lett. 85 5400
[34] Yu L S 2006 Physics of Semiconductor Heterojunctions (2nd Edition) (Beijing: Science Press) p141 (in Chinese) [虞丽生 2006 半导体异质结物理(第二版) (北京: 科学出版社) 第141页]
[35] [36] Jena D, Smorchkova I, Gossard A C, Mishra U K 2001 Phys. Stat. Sol. (b) 228 617
[37] [38] Antoszewski J, Gracey M, Dell J M, Faraone L, Fisher T A, Parish G, Wu Y F, Mishra U K 2000 J. Appl. Phys. 87 3900
[39] [40] Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M 1997 Appl. Phys. Lett. 71 1504
[41] [42] Bastard G 1983 Appl. Phys. Lett. 43 591
[43] [44] [45] Ferry D K, Goodnick S M 1999 Transport in Nanostructures (Cambridge: Cambridge University Press)
[46] [47] Zhang J F, Mao W, Zhang J C, Hao Y 2008 Chin. Phys. B 17 2689
计量
- 文章访问数: 10665
- PDF下载量: 812
- 被引次数: 0