搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶格匹配InAlN/GaN和InAlN/AlN/GaN材料二维电子气输运特性研究

王平亚 张金风 薛军帅 周勇波 张进成 郝跃

引用本文:
Citation:

晶格匹配InAlN/GaN和InAlN/AlN/GaN材料二维电子气输运特性研究

王平亚, 张金风, 薛军帅, 周勇波, 张进成, 郝跃

Transport properties of two-dimensional electron gas in lattice-matched InAlN/GaN and InAlN/AlN/GaN materials

Wang Ping-Ya, Zhang Jin-Feng, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue
PDF
导出引用
  • 文章研究了InAlN/GaN和引入AlN界面插入层形成的InAlN/AlN/GaN材料的输运性质. 样品均在蓝宝石上以脉冲金属有机物化学气相淀积法生长,霍尔迁移率变温特性具有典型的二维电子气(2DEG)特征. 综合各种散射机理包括声学形变势散射、压电散射、极性光学声子散射、位错散射、合金无序散射和界面粗糙度散射,理论分析了温度对迁移率的影响,发现室温下两种材料中2DEG支配性的散射机理都是极性光学波散射和界面粗糙度散射;AlN插入层对InAlN/GaN材料迁移率的改善作用一方面是免除2DEG的合金无序散射,另外还显著改善异质界面,抑制了界面粗糙度散射. 考虑到2DEG密度也是影响其迁移率的重要因素,结合实验数据给出了晶格匹配InAlN/GaN和InAlN/AlN/GaN材料的2DEG迁移率随电子密度变化的理论上限.
    The lattice-matched InAlN/GaN structure is one kind of emerging material with high conductivity and used in GaN-based high electron mobility transistors (HEMTs). The transport properties of lattice-matched InAlN/GaN structure and InAlN/AlN/GaN structure are studied. The samples are grown using pulsed metal organic chemical vapor deposition on sapphire substates. Both structures show temperature-dependent Hall mobilities with a typical behavior of two-dimensional electron gas (2DEG). Theoretical analysis of the temperature dependence of mobility is carried out based on the comprehensive consideration of various scattering mechanisms such as acoustic deformation-potential, piezoelectric, polar optic phonon, dislocation, alloy disorder and interface roughness scattering. It is found that the dominant scattering mechanisms are the interface roughness scattering and the polar optic phonon scattering for both structures at room temperature. The insertion of AlN spacer layer into InAlN/GaN interface exempts 2DEG from alloy disorder scattering, more importantly results in a better interface, and restrains greatly interface roughness scattering. The influence of sheet density on 2DEG mobility is also considered, and the upper limit of density-dependent 2DEG mobility is given for lattice-matched InAlN/GaN and InAlN/AlN/GaN structures and compared with many reported experimental data.
    • 基金项目: 国家科技重大专项(批准号: 2008ZX01002-002)、国家自然科学基金(批准号: 60890191)、国家自然科学基金重点项目(批准号: 60736033)和高等学校博士学科点新教师基金项目(批准号: 200807011012)资助的课题.
    [1]

    Jeganathan K, Shimizu M, Okumura H, Yano Y, Akutsu N 2007 J. Cryst. Growth 304 342

    [2]

    Katz O, Mistele D, Meyler B, Bahir G, Salzman J 2004 Electron. Lett. 40 1304

    [3]
    [4]

    Kuzmik J, Pozzovivo G, Ostermaier C, Strasser G, Pogany D, Gornik E, Carlin J F, Gonschorek M, Feltin E, Grandjean N 2009 J. Appl. Phys. 106 124503

    [5]
    [6]
    [7]

    Li R F, Yang R X, Wu Y B, Zhang Z G, Xu N Y, Ma Y Q 2008 Acta Phys. Sin. 57 2450 (in Chinese)[李若凡、杨瑞霞、武一宾、张志国、许娜颖、马永强 2008 57 2450]

    [8]
    [9]

    Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N 2006 Appl. Phys. Lett. 89 062106

    [10]

    Kuzmik J, Carlin J F, Gonschorek M, Kostopoulos A, Konstantinidis G, Pozzovivo G, Golka S, Georgakilas A, Grandjean N, Strasser G, Pogany D 2007 Phys. Stat. Sol. (a) 204 2019

    [11]
    [12]

    Xie J Q, Ni X F, Wu M, Leach J H, zgr V, Morko H 2007 Appl. Phys. Lett. 91 132116

    [13]
    [14]

    Miyoshi M, Kuraoka Y, Tanaka M, Egawa T 2008 Appl. Phys. Express 1 081102

    [15]
    [16]
    [17]

    Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707

    [18]

    Ni J Y, Hao Y, Zhang J C, Duan H T, Zhang J F 2009 Acta Phys. Sin. 58 4925 (in Chinese)[倪金玉、郝 跃、张进成、段焕涛、张金风 2009 58 4925]

    [19]
    [20]
    [21]

    Hiroki M, Yokoyama H, Watanabe N, Kobayashi T 2006 Superlatt. Microstruc. 40 214

    [22]

    Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Shi L Y, Wang H, Yang L A, Zhang J F 2011 J. Cryst. Growth 314 359

    [23]
    [24]

    Fang F F, Howard W E 1966 Phys. Rev. Lett. 16 797

    [25]
    [26]
    [27]

    Zhang J F, Hao Y, Zhang J C, Ni J Y 2008 Sci. in China Ser. E 38 949 (in Chinese)[张金风、郝 跃、张进城、倪金玉 2008 中国科学E辑 38 949]

    [28]

    Zhang J F, Mao W, Zhang J C, Hao Y 2008 Chin. Phys. B 17 2689

    [29]
    [30]
    [31]

    Jena D 2003 Ph.D. Thesis (University of California, Santa Barbara) p50

    [32]
    [33]

    Bougrov V, Levinshtein M E, Rumyantsev S L, Zubrilov A 2001 Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (New York, John Wiley Sons) p1-30

    [34]
    [35]

    Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S, Mishra U K 2001 J. Appl. Phys. 90 5196

    [36]

    Liu B, Yin J Y, Li J, Feng Z H, Feng Z, Cai S J 2008 15 th National Conference on Compound Semiconductor Materials, Microwave Device and Optoelectronic Device p54 (in Chinese)[刘 波、尹甲运、李 佳、冯志宏、冯震、蔡树军 2008 第十五届全国化合物半导体、微波器件和光电器件学术会议论文集 第54页]

    [37]
    [38]

    Dadgar A, Schulze F, Blsing J, Diez A, Krost A, Neuburger M, Kohn E, Daumiller I, Kunze M 2004 Appl. Phys. Lett. 85 5400

    [39]
    [40]
    [41]

    Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707

  • [1]

    Jeganathan K, Shimizu M, Okumura H, Yano Y, Akutsu N 2007 J. Cryst. Growth 304 342

    [2]

    Katz O, Mistele D, Meyler B, Bahir G, Salzman J 2004 Electron. Lett. 40 1304

    [3]
    [4]

    Kuzmik J, Pozzovivo G, Ostermaier C, Strasser G, Pogany D, Gornik E, Carlin J F, Gonschorek M, Feltin E, Grandjean N 2009 J. Appl. Phys. 106 124503

    [5]
    [6]
    [7]

    Li R F, Yang R X, Wu Y B, Zhang Z G, Xu N Y, Ma Y Q 2008 Acta Phys. Sin. 57 2450 (in Chinese)[李若凡、杨瑞霞、武一宾、张志国、许娜颖、马永强 2008 57 2450]

    [8]
    [9]

    Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N 2006 Appl. Phys. Lett. 89 062106

    [10]

    Kuzmik J, Carlin J F, Gonschorek M, Kostopoulos A, Konstantinidis G, Pozzovivo G, Golka S, Georgakilas A, Grandjean N, Strasser G, Pogany D 2007 Phys. Stat. Sol. (a) 204 2019

    [11]
    [12]

    Xie J Q, Ni X F, Wu M, Leach J H, zgr V, Morko H 2007 Appl. Phys. Lett. 91 132116

    [13]
    [14]

    Miyoshi M, Kuraoka Y, Tanaka M, Egawa T 2008 Appl. Phys. Express 1 081102

    [15]
    [16]
    [17]

    Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707

    [18]

    Ni J Y, Hao Y, Zhang J C, Duan H T, Zhang J F 2009 Acta Phys. Sin. 58 4925 (in Chinese)[倪金玉、郝 跃、张进成、段焕涛、张金风 2009 58 4925]

    [19]
    [20]
    [21]

    Hiroki M, Yokoyama H, Watanabe N, Kobayashi T 2006 Superlatt. Microstruc. 40 214

    [22]

    Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Shi L Y, Wang H, Yang L A, Zhang J F 2011 J. Cryst. Growth 314 359

    [23]
    [24]

    Fang F F, Howard W E 1966 Phys. Rev. Lett. 16 797

    [25]
    [26]
    [27]

    Zhang J F, Hao Y, Zhang J C, Ni J Y 2008 Sci. in China Ser. E 38 949 (in Chinese)[张金风、郝 跃、张进城、倪金玉 2008 中国科学E辑 38 949]

    [28]

    Zhang J F, Mao W, Zhang J C, Hao Y 2008 Chin. Phys. B 17 2689

    [29]
    [30]
    [31]

    Jena D 2003 Ph.D. Thesis (University of California, Santa Barbara) p50

    [32]
    [33]

    Bougrov V, Levinshtein M E, Rumyantsev S L, Zubrilov A 2001 Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (New York, John Wiley Sons) p1-30

    [34]
    [35]

    Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S, Mishra U K 2001 J. Appl. Phys. 90 5196

    [36]

    Liu B, Yin J Y, Li J, Feng Z H, Feng Z, Cai S J 2008 15 th National Conference on Compound Semiconductor Materials, Microwave Device and Optoelectronic Device p54 (in Chinese)[刘 波、尹甲运、李 佳、冯志宏、冯震、蔡树军 2008 第十五届全国化合物半导体、微波器件和光电器件学术会议论文集 第54页]

    [37]
    [38]

    Dadgar A, Schulze F, Blsing J, Diez A, Krost A, Neuburger M, Kohn E, Daumiller I, Kunze M 2004 Appl. Phys. Lett. 85 5400

    [39]
    [40]
    [41]

    Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707

  • [1] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制.  , 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [2] 张雪冰, 刘乃漳, 姚若河. AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射.  , 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [3] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究.  , 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [4] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析.  , 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [5] 王现彬, 赵正平, 冯志红. N极性GaN/AlGaN异质结二维电子气模拟.  , 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [6] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究.  , 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [7] 董海明. 低温下二硫化钼电子迁移率研究.  , 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [8] 王红培, 王广龙, 喻颖, 徐应强, 倪海桥, 牛智川, 高凤岐. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析.  , 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [9] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究.  , 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [10] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究.  , 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [11] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究.  , 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [12] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究.  , 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [13] 周文政, 林 铁, 商丽燕, 黄志明, 崔利杰, 李东临, 高宏玲, 曾一平, 郭少令, 桂永胜, 褚君浩. InAlAs/InGaAs/InAlAs量子阱高迁移率二维电子气系统中的反弱局域效应研究.  , 2007, 56(7): 4099-4104. doi: 10.7498/aps.56.4099
    [14] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性.  , 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [15] 朱 博, 桂永胜, 周文政, 商丽燕, 郭少令, 褚君浩, 吕 捷, 唐 宁, 沈 波, 张福甲. Al0.22Ga0.78N/GaN二维电子气中的弱局域和反弱局域效应.  , 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [16] 孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈 波, 张 荣, 韩 平, 江若琏, 施 毅. AlGaN/GaN异质结构中极化与势垒层掺杂对二维电子气的影响.  , 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [17] 孔月婵, 郑有炓, 储荣明, 顾书林. AlxGa1-xN/GaN异质结构中Al组分对二维电子气性质的影响.  , 2003, 52(7): 1756-1760. doi: 10.7498/aps.52.1756
    [18] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响.  , 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [19] 吕永良, 周世平, 徐得名. 光照下高电子迁移率晶体管特性分析.  , 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究.  , 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  10909
  • PDF下载量:  919
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-16
  • 修回日期:  2011-02-22
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map