搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强非局域非线性介质中的互诱导分数傅里叶变换

赵宝平 杨振军 陆大全 胡巍

引用本文:
Citation:

强非局域非线性介质中的互诱导分数傅里叶变换

赵宝平, 杨振军, 陆大全, 胡巍

Mutual-induced fractional Fourier transform in strongly nonlocal nonlinear medium

Zhao Bao-Ping, Yang Zhen-Jun, Lu Da-Quan, Hu Wei
PDF
导出引用
  • 在强非局域非线性介质中,用强抽运光可以诱导另一弱信号光实现互诱导分数傅里叶变换效应.信号光的分数傅里叶变换阶数与传输距离和抽运光功率有关,当传输距离不变时与抽运光功率的开方成正比.互诱导分数傅里叶变换是实现光控光的又一方法,其特性有助于研发新型的分数傅里叶变换器件,并在光信息处理、光学成像等多个领域有潜在的应用.
    The effect of mutual-induced fractional Fourier transform (FRFT) between a weak signal beam and a strong pump beam in a strongly nonlocal nonlinear medium is described. The signal beam is an FRFT during propagation and the order of FRFT is dependent on the propagation distance and the power of the pump beam. When the propagation distance is fixed, the order of FRFT of the signal beam is proportional to the square root of the power of the pump beam. Mutual-induced FRFT is another method of light controlling light, and its properties contribute to the development of new type FRFT devices, optical information processing and optical imaging.
    • 基金项目: 国家自然科学基金(批准号: 10804033,10674050)、高等学校博士学科点专项科研基金(批准号:200805740002)和广东省高等学校科技创新团队计划(批准号:06CXTD005)资助的课题.
    [1]

    Krolikowski W, Bango O, Rasmussen J J, Wylle J 2001 Phys. Rev. E 64 016612

    [2]
    [3]

    Snyder A W, Mitchell D J 1997 Science 276 1538

    [4]
    [5]

    Shen Y R 1997 Science 276 1520

    [6]
    [7]

    Ding N, Guo Q 2009 Chin. Phys. B 18 4298

    [8]
    [9]

    Yang Z J,Lu D Q, Hu W, Zheng Y Z, Gao X H 2010 Chin. Phys. B 19 124212

    [10]
    [11]

    Deng D M, Guo Q 2008 J. Opt. A 10 035101

    [12]

    Kartashov Y V, Torner L, Vysloukh V A, Mihalache D 2006 Opt. Lett. 31 1483

    [13]
    [14]
    [15]

    Wang Y Q, Guo Q 2008 Chin. Phys. B 17 7

    [16]
    [17]

    Pecclanti M, Rossi A D, Assanto G 2002 Appl. Phys. Lett. 77 7

    [18]
    [19]

    Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902

    [20]
    [21]

    Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842

    [22]

    Rotschild C, Alfassi B, Cohen O, Segev M 2006 Nat. Phys. 2 769

    [23]
    [24]

    Xu C B, Guo Q 2004 Acta Phys. Sin. 53 3025 (in Chinese)[许超彬、郭 旗 2004 53 3025]

    [25]
    [26]

    Yang P B, Cao L G, Hu W, Zhu Y Q, Guo Q, Yang X B 2008 Acta Phys. Sin. 57 285 (in Chinese) [杨平保、曹龙贵、胡 巍、朱叶青、郭 旗、杨湘波 2008 57 285]

    [27]
    [28]

    Zhang X P, Guo Q 2005 Acta Phys. Sin. 54 3178 (in Chinese) [张霞萍、郭 旗 2005 54 3178]

    [29]
    [30]

    Bai D F, Guo Q, Hu W 2008 Acta Phys. Sin. 57 5684 (in Chinese)[白东峰、郭 旗、胡 巍 2008 57 5684]

    [31]
    [32]

    Zheng Y J, Xuan W T, Lu D Q, Ouyang S G, Hu W, Guo Q 2010 Acta Phys. Sin. 59 1075 (in Chinese) [郑亚建、宣文涛、陆大全、欧阳世根、胡 巍、郭 旗 2010 59 1075]

    [33]
    [34]
    [35]

    Guo Q, Luo B, Yi F, Chi S, Xie Y 2004 Phys. Rev. E 69 016602

    [36]

    Pellat-Finet P 1994 Opt. Lett. 19 1388

    [37]
    [38]

    Bernardo L M, Soares O D D 1994 J. Opt. Soc. Am. A 11 2622

    [39]
    [40]
    [41]

    Kutay M A, Ozaktas H M 1998 J. Opt. Soc. Am. A 15 825

    [42]
    [43]

    Hahn J, Kim H, Lee B 2006 Opt. Express 14 11103

    [44]
    [45]

    Mendlovic D, Ozaktas H M 1993 J. Opt. Soc. Am. A 10 1875

    [46]

    Ozaktas H M, Mendlovic D 1994 Opt. Lett. 19 1678

    [47]
    [48]

    Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181

    [49]
    [50]
    [51]

    Bernardo L, Soares O D D 1994 Opt. Commun. 110 517

    [52]
    [53]

    Lohmann A W 1995 Opt. Commun. 115 437

    [54]
    [55]

    Lu D Q, Hu W, Zheng Y J, Liang Y B, Cao L G, Lan S, Guo Q 2008 Phys. Rev. A 78 043815

    [56]

    Zheng Y J, Lu D Q, Zheng R, Hu W, Guo Q 2009 Opt. Commun. 282 4423

    [57]
    [58]

    Deng D M, Zhao X, Guo Q, Lan S 2007 J. Opt. Soc. Am. B 24 2537

    [59]
    [60]
    [61]

    Rotschild C, Segev M, Xu Z, Kartashov Y V, Torner L 2006 Opt. Lett. 31 3312

    [62]

    Rotschild C, Cohen O, Manela O, Segev M 2005 Phys. Rev. Lett. 95 213904

    [63]
    [64]

    Alfassl B, Rotschild C, Manela O, Segev M 2007 Opt. Lett. 32 154

    [65]
    [66]
    [67]

    Cao L G, Zhu Y Q, Lu D Q, Hu W, Guo Q 2008 Opt. Commun. 281 5004

  • [1]

    Krolikowski W, Bango O, Rasmussen J J, Wylle J 2001 Phys. Rev. E 64 016612

    [2]
    [3]

    Snyder A W, Mitchell D J 1997 Science 276 1538

    [4]
    [5]

    Shen Y R 1997 Science 276 1520

    [6]
    [7]

    Ding N, Guo Q 2009 Chin. Phys. B 18 4298

    [8]
    [9]

    Yang Z J,Lu D Q, Hu W, Zheng Y Z, Gao X H 2010 Chin. Phys. B 19 124212

    [10]
    [11]

    Deng D M, Guo Q 2008 J. Opt. A 10 035101

    [12]

    Kartashov Y V, Torner L, Vysloukh V A, Mihalache D 2006 Opt. Lett. 31 1483

    [13]
    [14]
    [15]

    Wang Y Q, Guo Q 2008 Chin. Phys. B 17 7

    [16]
    [17]

    Pecclanti M, Rossi A D, Assanto G 2002 Appl. Phys. Lett. 77 7

    [18]
    [19]

    Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902

    [20]
    [21]

    Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842

    [22]

    Rotschild C, Alfassi B, Cohen O, Segev M 2006 Nat. Phys. 2 769

    [23]
    [24]

    Xu C B, Guo Q 2004 Acta Phys. Sin. 53 3025 (in Chinese)[许超彬、郭 旗 2004 53 3025]

    [25]
    [26]

    Yang P B, Cao L G, Hu W, Zhu Y Q, Guo Q, Yang X B 2008 Acta Phys. Sin. 57 285 (in Chinese) [杨平保、曹龙贵、胡 巍、朱叶青、郭 旗、杨湘波 2008 57 285]

    [27]
    [28]

    Zhang X P, Guo Q 2005 Acta Phys. Sin. 54 3178 (in Chinese) [张霞萍、郭 旗 2005 54 3178]

    [29]
    [30]

    Bai D F, Guo Q, Hu W 2008 Acta Phys. Sin. 57 5684 (in Chinese)[白东峰、郭 旗、胡 巍 2008 57 5684]

    [31]
    [32]

    Zheng Y J, Xuan W T, Lu D Q, Ouyang S G, Hu W, Guo Q 2010 Acta Phys. Sin. 59 1075 (in Chinese) [郑亚建、宣文涛、陆大全、欧阳世根、胡 巍、郭 旗 2010 59 1075]

    [33]
    [34]
    [35]

    Guo Q, Luo B, Yi F, Chi S, Xie Y 2004 Phys. Rev. E 69 016602

    [36]

    Pellat-Finet P 1994 Opt. Lett. 19 1388

    [37]
    [38]

    Bernardo L M, Soares O D D 1994 J. Opt. Soc. Am. A 11 2622

    [39]
    [40]
    [41]

    Kutay M A, Ozaktas H M 1998 J. Opt. Soc. Am. A 15 825

    [42]
    [43]

    Hahn J, Kim H, Lee B 2006 Opt. Express 14 11103

    [44]
    [45]

    Mendlovic D, Ozaktas H M 1993 J. Opt. Soc. Am. A 10 1875

    [46]

    Ozaktas H M, Mendlovic D 1994 Opt. Lett. 19 1678

    [47]
    [48]

    Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181

    [49]
    [50]
    [51]

    Bernardo L, Soares O D D 1994 Opt. Commun. 110 517

    [52]
    [53]

    Lohmann A W 1995 Opt. Commun. 115 437

    [54]
    [55]

    Lu D Q, Hu W, Zheng Y J, Liang Y B, Cao L G, Lan S, Guo Q 2008 Phys. Rev. A 78 043815

    [56]

    Zheng Y J, Lu D Q, Zheng R, Hu W, Guo Q 2009 Opt. Commun. 282 4423

    [57]
    [58]

    Deng D M, Zhao X, Guo Q, Lan S 2007 J. Opt. Soc. Am. B 24 2537

    [59]
    [60]
    [61]

    Rotschild C, Segev M, Xu Z, Kartashov Y V, Torner L 2006 Opt. Lett. 31 3312

    [62]

    Rotschild C, Cohen O, Manela O, Segev M 2005 Phys. Rev. Lett. 95 213904

    [63]
    [64]

    Alfassl B, Rotschild C, Manela O, Segev M 2007 Opt. Lett. 32 154

    [65]
    [66]
    [67]

    Cao L G, Zhu Y Q, Lu D Q, Hu W, Guo Q 2008 Opt. Commun. 281 5004

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像.  , 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用.  , 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [3] 杨佳奇, 刘文军. 基于变系数3+1维三次-五次复金兹堡-朗道方程的亮孤子及混合孤子传输特性.  , 2023, 72(10): 100504. doi: 10.7498/aps.72.20222430
    [4] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控.  , 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [5] 任波, 佘彦超, 徐小凤, 叶伏秋. 高阶效应下对称三量子点系统中光孤子稳定性研究.  , 2021, 70(22): 224205. doi: 10.7498/aps.70.20210942
    [6] 朱洁, 朱开成. 像散正弦-高斯光束的分数傅里叶变换与椭圆空心光束产生.  , 2016, 65(20): 204204. doi: 10.7498/aps.65.204204
    [7] 于宇, 贾维国, 闫青, 门克内木乐, 张俊萍. 拉曼散射与自陡峭效应对皮秒孤子传输特性的影响.  , 2015, 64(5): 054207. doi: 10.7498/aps.64.054207
    [8] 李建设, 李曙光, 赵原源, 韩颖, 陈海良, 韩晓明, 周桂耀. 在远离光子晶体光纤零色散波长的正常色散区入射飞秒脉冲产生四波混频及孤子效应的实验研究.  , 2014, 63(16): 164206. doi: 10.7498/aps.63.164206
    [9] 刘凌宇, 田慧平, 纪越峰. 光子晶体波导中的孤子传输及其延迟特性研究.  , 2011, 60(10): 104216. doi: 10.7498/aps.60.104216
    [10] 石鹏, 刘强, 曹国威, 李永平. 一种改良的啁啾变换算法及其应用.  , 2009, 58(8): 5392-5398. doi: 10.7498/aps.58.5392
    [11] 丁万山, 席 崚, 柳莲花. 基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究.  , 2008, 57(12): 7705-7711. doi: 10.7498/aps.57.7705
    [12] 卓 辉, 傅喜泉, 吴锦花, 文双春. 非线性光学格子中的光束演化研究.  , 2007, 56(1): 252-257. doi: 10.7498/aps.56.252
    [13] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成.  , 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [14] 陈宝信, 李 明, 张爱菊. 光束分数傅里叶变换几何特性的相空间束矩阵分析方法.  , 2007, 56(8): 4535-4541. doi: 10.7498/aps.56.4535
    [15] 吴锦花, 傅喜泉, 文双春. 一维光学格子孤子的传输特性及控制研究.  , 2006, 55(4): 1840-1845. doi: 10.7498/aps.55.1840
    [16] 令维军, 郑加安, 贾玉磊, 魏志义. 低阈值飞秒钛宝石激光器的理论研究.  , 2005, 54(4): 1619-1623. doi: 10.7498/aps.54.1619
    [17] 吴 平, 吕百达, 陈天禄. 光束分数傅里叶变换的Wigner分布函数分析方法.  , 2005, 54(2): 658-664. doi: 10.7498/aps.54.658
    [18] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子.  , 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [19] 刘山亮. 空间光孤子脉冲在平面光波导中的传输.  , 2003, 52(11): 2825-2830. doi: 10.7498/aps.52.2825
    [20] 赵道木, 王绍民. 失调分数傅里叶变换及其光学作用.  , 2001, 50(10): 1935-1938. doi: 10.7498/aps.50.1935
计量
  • 文章访问数:  6886
  • PDF下载量:  753
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-27
  • 修回日期:  2011-03-21
  • 刊出日期:  2011-04-05

/

返回文章
返回
Baidu
map