-
In the paper, we theoretically discuss the use of dynamic cavity environment to realize controlling of the evolution of spontaneous emission from an excited two-level atom. It is found that cyclical changes in cavity environment leads to the interaction betwcen the electromagnetic modes, resulting in the redistribution of the electromagnetic modes density; both the frequency of energy exchange and the energy dissipation rate between atom and environment are affected. When the frequency of environment change is relatively accordant with the process of energy exchange between the atom and environment, the decay rate is obviously inhibited and a stable coherence evolution can be obtained. Thus the evolution of coherent states can be modulated by using dynamic environment changes.
-
Keywords:
- spontaneous emission /
- dynamic surroundings /
- quantum control
[1] Purcell E 1946 Phys. Rev. 69 681
[2] Kleppner D 1981 Phys. Rev. Lett. 47 233
[3] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[4] John S 1987 Phys. Rev. Lett. 58 2486
[5] Fisher M C, Medina B G, Raizen M G 2001 Phys. Rev. Lett. 87 4
[6] Paspalakis E, Knight P L 2000 Journal of Modern Optics 47 1025
[7] Tan R, Li G X 2005 Acta Phys. Sin. 54 2059 (in Chinese)[谭 荣、李高翔 2005 54 2059]
[8] Itano W M, Heinzen D J, Bollinger J J, Wineland D J 1990 Phys. Rev. A 41 2295;
[9] Yang Y P, Fleischhauer M, Zhu S Y 2003 Phys. Rev. A 68 022103
[10] Huang X S, Xie S Y, Yang Y P 2006 Acta Phys. Sin. 55 2269(in Chinese)[黄仙山、谢双媛、羊亚平 2006 55 2269]
[11] Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809
[12] Wang X H, Kivshar Y S, Gu B Y 2004 Phys. Rev. Lett. 93 073901
[13] Fang Y F, Du C G, Li S Q 2006 Acta Phys. Sin. 56 4652(in Chinese)[房元锋、杜春光、李师群 2006 56 4652]
[14] Sun X D, Jiang X Q 2008 Optics Lett. 33 110
[15] Lodahl P, van Driel A F, Nikblaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654
[16] Aoki T, Dayan G, Wilcut E, Katz S D, Szabo K K 2006 Nature 433 671
[17] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87
[18] Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488
[19] Lin L H 2009 Chin. Phys. B 18 588
[20] Lu J H, Meng Z M, Liu Hai Y, Feng Tian H, Dai Q F, Wu L J, Guo Q, Hu W, Lan S 2009 Chin. Phys. B 18 4333
[21] Vahala K J 2003 Nature 424 839
[22] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817
[23] Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831
-
[1] Purcell E 1946 Phys. Rev. 69 681
[2] Kleppner D 1981 Phys. Rev. Lett. 47 233
[3] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[4] John S 1987 Phys. Rev. Lett. 58 2486
[5] Fisher M C, Medina B G, Raizen M G 2001 Phys. Rev. Lett. 87 4
[6] Paspalakis E, Knight P L 2000 Journal of Modern Optics 47 1025
[7] Tan R, Li G X 2005 Acta Phys. Sin. 54 2059 (in Chinese)[谭 荣、李高翔 2005 54 2059]
[8] Itano W M, Heinzen D J, Bollinger J J, Wineland D J 1990 Phys. Rev. A 41 2295;
[9] Yang Y P, Fleischhauer M, Zhu S Y 2003 Phys. Rev. A 68 022103
[10] Huang X S, Xie S Y, Yang Y P 2006 Acta Phys. Sin. 55 2269(in Chinese)[黄仙山、谢双媛、羊亚平 2006 55 2269]
[11] Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809
[12] Wang X H, Kivshar Y S, Gu B Y 2004 Phys. Rev. Lett. 93 073901
[13] Fang Y F, Du C G, Li S Q 2006 Acta Phys. Sin. 56 4652(in Chinese)[房元锋、杜春光、李师群 2006 56 4652]
[14] Sun X D, Jiang X Q 2008 Optics Lett. 33 110
[15] Lodahl P, van Driel A F, Nikblaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654
[16] Aoki T, Dayan G, Wilcut E, Katz S D, Szabo K K 2006 Nature 433 671
[17] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87
[18] Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488
[19] Lin L H 2009 Chin. Phys. B 18 588
[20] Lu J H, Meng Z M, Liu Hai Y, Feng Tian H, Dai Q F, Wu L J, Guo Q, Hu W, Lan S 2009 Chin. Phys. B 18 4333
[21] Vahala K J 2003 Nature 424 839
[22] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817
[23] Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831
计量
- 文章访问数: 8686
- PDF下载量: 681
- 被引次数: 0