-
应用Chen-Mbius晶格反演获得的原子间相互作用势,对镍基超导母体材料EuNi2Si2不同空间群的结构进行结构弛豫、切变拉伸、随机扰动和X射线衍射谱的分析.研究表明,空间群号为139结构的EuNi2Si2母体材料能量最低,结构最稳定.另外,还计算了空间群号为139稳定晶格结构的声子态密度和热力学性质.计算结果表明:对于声子态密度,原子质量较大的稀土元素Eu在低频范围内贡献最大,随着频率的升高,原子质量较小的元素Si的贡献越来越突出;对于比热容和振动熵,在低温区元素Eu和Ni的贡献较大,随着温度的升高,元素Si的贡献越来越突出.
-
关键词:
- Chen-Mbius晶格反演 /
- 原子相互作用势 /
- 热力学性质
We investigate the structure stability, stretching, compressing, shearing, random shifting and X-ray diffraction of Ni based superconductive material EuNi2Si2 with different space group numbers based on inversed interatomic potentials obtained with Chen-Mbius lattice-inversion technique. It is found that the space group number of 139 has the lowest binding energy and the structure is the most stable. Furthermore, the phonon density and the thermodynamic properties of the stable structure are calculated and discussed. The phonon density of states shows that the low frequency range is dominated by the rare-earth element Eu with larger atomic mass. While with frequency increasing, the Si atoms with smaller atomic mass become more and more prominent. For the specific heat and the vibrational entropy, Eu and Ni contribute more in the low temperature range, Si becomes more and more prominent with temperature increasing.[1] Dou S X, Liu H K, Guo Y C 1993 Appl. Supercond. 1 1515
[2] Hardono T, Cook C D, Jin J X 1998 Supercond. Sci. Technol. 11 1087
[3] Hardono T, Cook C D, Jin J X 1999 IEEE Trans. Appl. Supercond. 9 813
[4] Maguire J F, Schmidt F, Hamber F, Welsh T E 2005 IEEE Trans. Appl. Supercond. 15 1787
[5] Guo X B, Cao B S, Wei B, Zhu M H, He W J, Yin Z S, He S, Gao B X 2003 Chin. J. Low Temp. Phys. 25 55(in Chinese)[郭旭波、曹必松、魏 斌、朱美红、何文俊、尹哲胜、何 山、高葆新 2003 低温 25 55]
[6] Yin Z S, Wei B, Cao B S, Guo X B, Zhang X P, He W J, He S, Gao L M, Zhu M H, Gao B X 2006 Chin. J. Low Temp. Phys. 28 272(in Chinese)[尹哲胜、魏 斌、曹必松、郭旭波、张晓平、何文俊、何 山、郜龙马、朱美红、高葆新 2006 低温 28 272]
[7] Rango P D, Lees M, Lejay P, Sulpice A, Tournier R, Ingold M, Germi P, Pernet M 1991 Nature 349 770
[8] Wang J S, Wang S Y, Zeng Y W, Huang H Y, Luo F, Xu Z P 2002 Physica C 378—381 809
[9] Wang S Y, Wang J S, Ren Z Y, Jiang H, Zhu M, Wang X R, Tang Q X 2001 IEEE Trans. Appl. Supercond. 11 1808
[10] Terai M, Igarashi M, Kusada S, Nemoto K, Kuriyama T, Hanai S, Yamashita T, Nakao H 2006 IEEE Trans. Appl. Supercond. 16 1124
[11] Nishijima N, Saho N, Asano K, Hayashi H, Tsutsumi K, Murakami M 2003 IEEE Trans. Appl. Supercond. 13 1580
[12] Steurer M, Hribernik W 2005 IEEE Trans. Appl. Supercond. 15 1887
[13] Hanai S, Shimada M, Tsuchihashi T, Kurusu T, Ono M, Shimada K, Koso S, Tsutsumi K, Naqaya S 2003 IEEE Trans. Appl. Supercond. 13 1810
[14] Nagaya S, Hirano N, Shikimachi K, Hanai S, Inaqaki J, Maruyama K, Ioka S, Ono M, Ohsemochi K, Kurusu T 2004 IEEE Trans. Appl. Supercond. 14 770
[15] Fukushima K, Tanaka K, Wakuda T, Okada M, Ohata K, Sato J, Kiyoshi T, Wada H 2001 Physica C 357—360 1297
[16] Kang L, Inui Y, Matsuo T, Ishikawa M, Umoto J 2000 Ener. Convers. Manage. 41 1453
[17] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296
[18] Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761
[19] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002
[20] Ren Z A, Yang J, Lu W, Yi W, Che G C, Dong X L, Sun L L, Zhao Z X 2008 Mater. Res. Innovations 12 105
[21] Ren Z A, Yang J, Lu W, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Europhys. Lett. 82 57002
[22] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[23] Wang C, Li L J, Chi S, Zhu Z G, Ren Z, Li Y , Wang Y T, Lin X, Luo Y K, Jiang S, Xu X F, Cao G H, Xu Z A 2008 Europhys. Lett. 83 67006
[24] Chen Y Q, Luo J, Liang J K, Li J B, Rao G H 2009 Chin. Phys. B 18 4944
[25] Mayer I, Felner I 1977 J. Phys. Chem. Solids 38 1031
[26] Chen N X, Ren G B 1992 Phys. Rev. B 45 8177
[27] Chen N X, Chen Z D, Wei Y C 1997 Phys. Rev. E 55 R5
[28] Chen N X, Ge X J, Zhang W Q, Zhu F W 1998 Phys. Rev. B 57 14203
[29] Zhang W Q, Xie Q, Ge X J, Chen N X 1997 J. Appl. Phys. 82 578
[30] Chen Y, Shen J 2009 Acta Phys. Sin. 58 S146 (in Chinese) [陈 怡、申 江 2009 58 S146]
[31] Chen Y, Shen J 2009 Acta Phys. Sin. 58 S141 (in Chinese) [陈 怡、申 江 2009 58 S141]
[32] Zhang S, Chen N X 2002 Phys. Rev. B 66 064106
-
[1] Dou S X, Liu H K, Guo Y C 1993 Appl. Supercond. 1 1515
[2] Hardono T, Cook C D, Jin J X 1998 Supercond. Sci. Technol. 11 1087
[3] Hardono T, Cook C D, Jin J X 1999 IEEE Trans. Appl. Supercond. 9 813
[4] Maguire J F, Schmidt F, Hamber F, Welsh T E 2005 IEEE Trans. Appl. Supercond. 15 1787
[5] Guo X B, Cao B S, Wei B, Zhu M H, He W J, Yin Z S, He S, Gao B X 2003 Chin. J. Low Temp. Phys. 25 55(in Chinese)[郭旭波、曹必松、魏 斌、朱美红、何文俊、尹哲胜、何 山、高葆新 2003 低温 25 55]
[6] Yin Z S, Wei B, Cao B S, Guo X B, Zhang X P, He W J, He S, Gao L M, Zhu M H, Gao B X 2006 Chin. J. Low Temp. Phys. 28 272(in Chinese)[尹哲胜、魏 斌、曹必松、郭旭波、张晓平、何文俊、何 山、郜龙马、朱美红、高葆新 2006 低温 28 272]
[7] Rango P D, Lees M, Lejay P, Sulpice A, Tournier R, Ingold M, Germi P, Pernet M 1991 Nature 349 770
[8] Wang J S, Wang S Y, Zeng Y W, Huang H Y, Luo F, Xu Z P 2002 Physica C 378—381 809
[9] Wang S Y, Wang J S, Ren Z Y, Jiang H, Zhu M, Wang X R, Tang Q X 2001 IEEE Trans. Appl. Supercond. 11 1808
[10] Terai M, Igarashi M, Kusada S, Nemoto K, Kuriyama T, Hanai S, Yamashita T, Nakao H 2006 IEEE Trans. Appl. Supercond. 16 1124
[11] Nishijima N, Saho N, Asano K, Hayashi H, Tsutsumi K, Murakami M 2003 IEEE Trans. Appl. Supercond. 13 1580
[12] Steurer M, Hribernik W 2005 IEEE Trans. Appl. Supercond. 15 1887
[13] Hanai S, Shimada M, Tsuchihashi T, Kurusu T, Ono M, Shimada K, Koso S, Tsutsumi K, Naqaya S 2003 IEEE Trans. Appl. Supercond. 13 1810
[14] Nagaya S, Hirano N, Shikimachi K, Hanai S, Inaqaki J, Maruyama K, Ioka S, Ono M, Ohsemochi K, Kurusu T 2004 IEEE Trans. Appl. Supercond. 14 770
[15] Fukushima K, Tanaka K, Wakuda T, Okada M, Ohata K, Sato J, Kiyoshi T, Wada H 2001 Physica C 357—360 1297
[16] Kang L, Inui Y, Matsuo T, Ishikawa M, Umoto J 2000 Ener. Convers. Manage. 41 1453
[17] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296
[18] Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761
[19] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002
[20] Ren Z A, Yang J, Lu W, Yi W, Che G C, Dong X L, Sun L L, Zhao Z X 2008 Mater. Res. Innovations 12 105
[21] Ren Z A, Yang J, Lu W, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Europhys. Lett. 82 57002
[22] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[23] Wang C, Li L J, Chi S, Zhu Z G, Ren Z, Li Y , Wang Y T, Lin X, Luo Y K, Jiang S, Xu X F, Cao G H, Xu Z A 2008 Europhys. Lett. 83 67006
[24] Chen Y Q, Luo J, Liang J K, Li J B, Rao G H 2009 Chin. Phys. B 18 4944
[25] Mayer I, Felner I 1977 J. Phys. Chem. Solids 38 1031
[26] Chen N X, Ren G B 1992 Phys. Rev. B 45 8177
[27] Chen N X, Chen Z D, Wei Y C 1997 Phys. Rev. E 55 R5
[28] Chen N X, Ge X J, Zhang W Q, Zhu F W 1998 Phys. Rev. B 57 14203
[29] Zhang W Q, Xie Q, Ge X J, Chen N X 1997 J. Appl. Phys. 82 578
[30] Chen Y, Shen J 2009 Acta Phys. Sin. 58 S146 (in Chinese) [陈 怡、申 江 2009 58 S146]
[31] Chen Y, Shen J 2009 Acta Phys. Sin. 58 S141 (in Chinese) [陈 怡、申 江 2009 58 S141]
[32] Zhang S, Chen N X 2002 Phys. Rev. B 66 064106
计量
- 文章访问数: 8393
- PDF下载量: 742
- 被引次数: 0