搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍基超导母体材料EuNi2Si2的结构和热力学性质研究

王宇杰 周俊敏 钱萍 申江

引用本文:
Citation:

镍基超导母体材料EuNi2Si2的结构和热力学性质研究

王宇杰, 周俊敏, 钱萍, 申江

Structure and thermodynamic properties of Ni based superconductive material EuNi2Si2

Qian Ping, Shen Jiang, Wang Yu-Jie, Zhou Jun-Min
PDF
导出引用
  • 应用Chen-Mbius晶格反演获得的原子间相互作用势,对镍基超导母体材料EuNi2Si2不同空间群的结构进行结构弛豫、切变拉伸、随机扰动和X射线衍射谱的分析.研究表明,空间群号为139结构的EuNi2Si2母体材料能量最低,结构最稳定.另外,还计算了空间群号为139稳定晶格结构的声子态密度和热力学性质.计算结果表明:对于声子态密度,原子质量较大的稀土元素Eu在低频范围内贡献最大,随着频率的升高,原子质量较小的元素Si的贡献越来越突出;对于比热容和振动熵,在低温区元素Eu和Ni的贡献较大,随着温度的升高,元素Si的贡献越来越突出.
    We investigate the structure stability, stretching, compressing, shearing, random shifting and X-ray diffraction of Ni based superconductive material EuNi2Si2 with different space group numbers based on inversed interatomic potentials obtained with Chen-Mbius lattice-inversion technique. It is found that the space group number of 139 has the lowest binding energy and the structure is the most stable. Furthermore, the phonon density and the thermodynamic properties of the stable structure are calculated and discussed. The phonon density of states shows that the low frequency range is dominated by the rare-earth element Eu with larger atomic mass. While with frequency increasing, the Si atoms with smaller atomic mass become more and more prominent. For the specific heat and the vibrational entropy, Eu and Ni contribute more in the low temperature range, Si becomes more and more prominent with temperature increasing.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2006CB605101)和周口师范学院青年科研基金(批准号: ZKNUQN 200913)资助的课题.
    [1]

    Dou S X, Liu H K, Guo Y C 1993 Appl. Supercond. 1 1515

    [2]

    Hardono T, Cook C D, Jin J X 1998 Supercond. Sci. Technol. 11 1087

    [3]

    Hardono T, Cook C D, Jin J X 1999 IEEE Trans. Appl. Supercond. 9 813

    [4]

    Maguire J F, Schmidt F, Hamber F, Welsh T E 2005 IEEE Trans. Appl. Supercond. 15 1787

    [5]

    Guo X B, Cao B S, Wei B, Zhu M H, He W J, Yin Z S, He S, Gao B X 2003 Chin. J. Low Temp. Phys. 25 55(in Chinese)[郭旭波、曹必松、魏 斌、朱美红、何文俊、尹哲胜、何 山、高葆新 2003 低温 25 55]

    [6]

    Yin Z S, Wei B, Cao B S, Guo X B, Zhang X P, He W J, He S, Gao L M, Zhu M H, Gao B X 2006 Chin. J. Low Temp. Phys. 28 272(in Chinese)[尹哲胜、魏 斌、曹必松、郭旭波、张晓平、何文俊、何 山、郜龙马、朱美红、高葆新 2006 低温 28 272]

    [7]

    Rango P D, Lees M, Lejay P, Sulpice A, Tournier R, Ingold M, Germi P, Pernet M 1991 Nature 349 770

    [8]

    Wang J S, Wang S Y, Zeng Y W, Huang H Y, Luo F, Xu Z P 2002 Physica C 378—381 809

    [9]

    Wang S Y, Wang J S, Ren Z Y, Jiang H, Zhu M, Wang X R, Tang Q X 2001 IEEE Trans. Appl. Supercond. 11 1808

    [10]

    Terai M, Igarashi M, Kusada S, Nemoto K, Kuriyama T, Hanai S, Yamashita T, Nakao H 2006 IEEE Trans. Appl. Supercond. 16 1124

    [11]

    Nishijima N, Saho N, Asano K, Hayashi H, Tsutsumi K, Murakami M 2003 IEEE Trans. Appl. Supercond. 13 1580

    [12]

    Steurer M, Hribernik W 2005 IEEE Trans. Appl. Supercond. 15 1887

    [13]

    Hanai S, Shimada M, Tsuchihashi T, Kurusu T, Ono M, Shimada K, Koso S, Tsutsumi K, Naqaya S 2003 IEEE Trans. Appl. Supercond. 13 1810

    [14]

    Nagaya S, Hirano N, Shikimachi K, Hanai S, Inaqaki J, Maruyama K, Ioka S, Ono M, Ohsemochi K, Kurusu T 2004 IEEE Trans. Appl. Supercond. 14 770

    [15]

    Fukushima K, Tanaka K, Wakuda T, Okada M, Ohata K, Sato J, Kiyoshi T, Wada H 2001 Physica C 357—360 1297

    [16]

    Kang L, Inui Y, Matsuo T, Ishikawa M, Umoto J 2000 Ener. Convers. Manage. 41 1453

    [17]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [18]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [19]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [20]

    Ren Z A, Yang J, Lu W, Yi W, Che G C, Dong X L, Sun L L, Zhao Z X 2008 Mater. Res. Innovations 12 105

    [21]

    Ren Z A, Yang J, Lu W, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Europhys. Lett. 82 57002

    [22]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [23]

    Wang C, Li L J, Chi S, Zhu Z G, Ren Z, Li Y , Wang Y T, Lin X, Luo Y K, Jiang S, Xu X F, Cao G H, Xu Z A 2008 Europhys. Lett. 83 67006

    [24]

    Chen Y Q, Luo J, Liang J K, Li J B, Rao G H 2009 Chin. Phys. B 18 4944

    [25]

    Mayer I, Felner I 1977 J. Phys. Chem. Solids 38 1031

    [26]

    Chen N X, Ren G B 1992 Phys. Rev. B 45 8177

    [27]

    Chen N X, Chen Z D, Wei Y C 1997 Phys. Rev. E 55 R5

    [28]

    Chen N X, Ge X J, Zhang W Q, Zhu F W 1998 Phys. Rev. B 57 14203

    [29]

    Zhang W Q, Xie Q, Ge X J, Chen N X 1997 J. Appl. Phys. 82 578

    [30]

    Chen Y, Shen J 2009 Acta Phys. Sin. 58 S146 (in Chinese) [陈 怡、申 江 2009 58 S146]

    [31]

    Chen Y, Shen J 2009 Acta Phys. Sin. 58 S141 (in Chinese) [陈 怡、申 江 2009 58 S141]

    [32]

    Zhang S, Chen N X 2002 Phys. Rev. B 66 064106

  • [1]

    Dou S X, Liu H K, Guo Y C 1993 Appl. Supercond. 1 1515

    [2]

    Hardono T, Cook C D, Jin J X 1998 Supercond. Sci. Technol. 11 1087

    [3]

    Hardono T, Cook C D, Jin J X 1999 IEEE Trans. Appl. Supercond. 9 813

    [4]

    Maguire J F, Schmidt F, Hamber F, Welsh T E 2005 IEEE Trans. Appl. Supercond. 15 1787

    [5]

    Guo X B, Cao B S, Wei B, Zhu M H, He W J, Yin Z S, He S, Gao B X 2003 Chin. J. Low Temp. Phys. 25 55(in Chinese)[郭旭波、曹必松、魏 斌、朱美红、何文俊、尹哲胜、何 山、高葆新 2003 低温 25 55]

    [6]

    Yin Z S, Wei B, Cao B S, Guo X B, Zhang X P, He W J, He S, Gao L M, Zhu M H, Gao B X 2006 Chin. J. Low Temp. Phys. 28 272(in Chinese)[尹哲胜、魏 斌、曹必松、郭旭波、张晓平、何文俊、何 山、郜龙马、朱美红、高葆新 2006 低温 28 272]

    [7]

    Rango P D, Lees M, Lejay P, Sulpice A, Tournier R, Ingold M, Germi P, Pernet M 1991 Nature 349 770

    [8]

    Wang J S, Wang S Y, Zeng Y W, Huang H Y, Luo F, Xu Z P 2002 Physica C 378—381 809

    [9]

    Wang S Y, Wang J S, Ren Z Y, Jiang H, Zhu M, Wang X R, Tang Q X 2001 IEEE Trans. Appl. Supercond. 11 1808

    [10]

    Terai M, Igarashi M, Kusada S, Nemoto K, Kuriyama T, Hanai S, Yamashita T, Nakao H 2006 IEEE Trans. Appl. Supercond. 16 1124

    [11]

    Nishijima N, Saho N, Asano K, Hayashi H, Tsutsumi K, Murakami M 2003 IEEE Trans. Appl. Supercond. 13 1580

    [12]

    Steurer M, Hribernik W 2005 IEEE Trans. Appl. Supercond. 15 1887

    [13]

    Hanai S, Shimada M, Tsuchihashi T, Kurusu T, Ono M, Shimada K, Koso S, Tsutsumi K, Naqaya S 2003 IEEE Trans. Appl. Supercond. 13 1810

    [14]

    Nagaya S, Hirano N, Shikimachi K, Hanai S, Inaqaki J, Maruyama K, Ioka S, Ono M, Ohsemochi K, Kurusu T 2004 IEEE Trans. Appl. Supercond. 14 770

    [15]

    Fukushima K, Tanaka K, Wakuda T, Okada M, Ohata K, Sato J, Kiyoshi T, Wada H 2001 Physica C 357—360 1297

    [16]

    Kang L, Inui Y, Matsuo T, Ishikawa M, Umoto J 2000 Ener. Convers. Manage. 41 1453

    [17]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [18]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [19]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [20]

    Ren Z A, Yang J, Lu W, Yi W, Che G C, Dong X L, Sun L L, Zhao Z X 2008 Mater. Res. Innovations 12 105

    [21]

    Ren Z A, Yang J, Lu W, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Europhys. Lett. 82 57002

    [22]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [23]

    Wang C, Li L J, Chi S, Zhu Z G, Ren Z, Li Y , Wang Y T, Lin X, Luo Y K, Jiang S, Xu X F, Cao G H, Xu Z A 2008 Europhys. Lett. 83 67006

    [24]

    Chen Y Q, Luo J, Liang J K, Li J B, Rao G H 2009 Chin. Phys. B 18 4944

    [25]

    Mayer I, Felner I 1977 J. Phys. Chem. Solids 38 1031

    [26]

    Chen N X, Ren G B 1992 Phys. Rev. B 45 8177

    [27]

    Chen N X, Chen Z D, Wei Y C 1997 Phys. Rev. E 55 R5

    [28]

    Chen N X, Ge X J, Zhang W Q, Zhu F W 1998 Phys. Rev. B 57 14203

    [29]

    Zhang W Q, Xie Q, Ge X J, Chen N X 1997 J. Appl. Phys. 82 578

    [30]

    Chen Y, Shen J 2009 Acta Phys. Sin. 58 S146 (in Chinese) [陈 怡、申 江 2009 58 S146]

    [31]

    Chen Y, Shen J 2009 Acta Phys. Sin. 58 S141 (in Chinese) [陈 怡、申 江 2009 58 S141]

    [32]

    Zhang S, Chen N X 2002 Phys. Rev. B 66 064106

  • [1] 袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟. 第一性原理计算研究γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、力学和热力学性质.  , 2024, 73(8): 086104. doi: 10.7498/aps.73.20231755
    [2] 范俊宇, 高楠, 王鹏举, 苏艳. LLM-105的分子间相互作用和热力学性质.  , 2024, 73(4): 046501. doi: 10.7498/aps.73.20231696
    [3] 朱诚, 陈仙辉, 王城, 宋明, 夏维东. 氩-碳-硅等离子体热力学性质和输运系数计算.  , 2023, 72(12): 125202. doi: 10.7498/aps.72.20222390
    [4] 蹇君, 雷娇, 樊群超, 范志祥, 马杰, 付佳, 李会东, 徐勇根. NO分子宏观气体热力学性质的理论研究.  , 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [5] 赵玉娜, 丛红璐, 成爽, 于娜, 高涛, 马俊刚. 第一性原理研究Li2NH的晶格动力学和热力学性质.  , 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [6] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算.  , 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [7] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算.  , 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [8] 李鹤龄, 王娟娟, 杨斌, 沈宏君. 由N-E-V分布及赝势法研究弱磁场中弱相互作用费米子气体的热力学性质.  , 2015, 64(4): 040501. doi: 10.7498/aps.64.040501
    [9] 陈新龙, 门福殿, 田青松. 反常磁矩对弱磁场弱相互作用费米气体热力学性质的影响.  , 2015, 64(8): 080501. doi: 10.7498/aps.64.080501
    [10] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究.  , 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [11] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究.  , 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [12] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究.  , 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [13] 门福殿, 王炳福, 何晓刚, 隗群梅. 强磁场中弱相互作用费米气体的热力学性质.  , 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [14] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究.  , 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [15] 范召兰, 门福殿, 窦瑞波. 硬球势中相对论费米气体的热力学性质.  , 2010, 59(6): 3715-3719. doi: 10.7498/aps.59.3715
    [16] 陈怡, 申江. NaZn13型Fe基化合物的结构和热力学性质研究.  , 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [17] 袁都奇. 相互作用对玻色气体热力学性质及稳定性的影响.  , 2006, 55(4): 1634-1638. doi: 10.7498/aps.55.1634
    [18] 门福殿. 弱磁场中弱相互作用费米气体的热力学性质.  , 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [19] 苏国珍, 陈丽璇. 弱相互作用费米气体的热力学性质.  , 2004, 53(4): 984-990. doi: 10.7498/aps.53.984
    [20] 张雅男, 晏世雷. 随机横场与晶场作用混合自旋系统的热力学性质.  , 2003, 52(11): 2890-2895. doi: 10.7498/aps.52.2890
计量
  • 文章访问数:  8391
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-07
  • 修回日期:  2010-05-28
  • 刊出日期:  2010-06-05

/

返回文章
返回
Baidu
map