-
应用Laplace反变换技术建立脉冲涡流检测瞬态涡流场的时域解析模型. 首先,基于电磁波的反射与透射理论,应用截断区域特征函数展开式法建立瞬态涡流场的复频域模型,然后通过求解模型极点及其留数应用部分分式展开法求解复频域模型的Laplace反变换,从而建立阶跃型和指数型电流激励下瞬态涡流场的时域解析模型. 所建模型具有实现简单、效率高、模型精度不受吉布斯效应影响等优点. 最后应用基于Fourier反变换的探头瞬态感应电压模型对本文所建模型,实验结果验证了本文所建模型的正确性.
-
关键词:
- 脉冲涡流检测 /
- 瞬态涡流场 /
- 时域解析模型 /
- Laplace反变换
The transient eddy current field is analytically modeled by applying inverse Laplace transform to pulsed eddy current testing. The closed-form solution to transient eddy current field in a complex domain is obtained by using the truncated region eigenfunction expansion (TREE) method and the theory of reflection and transmission of electromagnetic waves. After extensive algebraic transform, the poles of the developed model and corresponding residues are able to be calculated. As a result, partial fraction expansion can be used to split up the complicated complex-domain model into the forms that are listed in the Laplace Transform table. Therefore, it is easy to derive the time-domain solutions to transient eddy current field with step and exponential current excitations respectively. The derived time-domain model not only has some advantages in the sense of implementation and efficiency, but also removes the Gibbs phenomenon. Finally, the inverse Fourier transform of induced voltage in the probe is performed and the good agreement demonstrates the validity of the established model.-
Keywords:
- pulsed eddy current testing /
- transient eddy current field /
- analytical time-domain model /
- inverse Laplace transform
[1] Tian G Y, Li Y, Mandache C 2009 IEEE Trans. Magn. 45 184
[2] Abidin I Z, Mandache C, Tian G Y, Morozov M 2009 NDT&E Int. 42 599
[3] Yu A L 2008 Chin. Phys. B 17 878
[4] Shi Q F, Gou M J, Yang X, Zhang Y 2010 Acta Phys. Sin. 59 3905 (in Chinese) [史庆藩、 苟铭江、 杨 曦、 张 宇 2010 59 3905]
[5] Fan M B, Huang P J, Ye B, Hou D B, Zhang G X, Zhou Z K 2009 NDT and E Int. 42 376
[6] Li Y, Tian G Y, Simm A. 2008. NDT and E Int. 41 477
[7] Tai C C, Rose J R, Moulder JC 1996. Rev. Sci. Instrum. 67 3965
[8] Bowler J R, Johnson M 1997 IEEE Trans. Magn. 33 2258
[9] Haan V O, Jong P A 2004 IEEE Trans. Magn. 40 371
[10] Fu F, Bowler J R 2008 IEEE Trans. Magn. 42 2029
[11] Xie L, Lei Y Z 2006 Acta Phys. Sin. 55 4397 (in Chinese) [谢 莉、 雷银照 2006 55 4397]
[12] Theodoulidis T P 2008 IEEE Trans. Magn. 42 1894
[13] Dodd C D, Deeds WE 1968 J. Appl. Phys. 39 2829
[14] Fan M B, Huang P J, Ye B, Hou D B, Zhang G X, Zhou Z K 2009 Acta Phys. Sin. 58 5950 (in Chinese) [范孟豹、 黄平捷、 叶 波、 侯迪波、 张光新、 周泽魁 2009 58 5950]
-
[1] Tian G Y, Li Y, Mandache C 2009 IEEE Trans. Magn. 45 184
[2] Abidin I Z, Mandache C, Tian G Y, Morozov M 2009 NDT&E Int. 42 599
[3] Yu A L 2008 Chin. Phys. B 17 878
[4] Shi Q F, Gou M J, Yang X, Zhang Y 2010 Acta Phys. Sin. 59 3905 (in Chinese) [史庆藩、 苟铭江、 杨 曦、 张 宇 2010 59 3905]
[5] Fan M B, Huang P J, Ye B, Hou D B, Zhang G X, Zhou Z K 2009 NDT and E Int. 42 376
[6] Li Y, Tian G Y, Simm A. 2008. NDT and E Int. 41 477
[7] Tai C C, Rose J R, Moulder JC 1996. Rev. Sci. Instrum. 67 3965
[8] Bowler J R, Johnson M 1997 IEEE Trans. Magn. 33 2258
[9] Haan V O, Jong P A 2004 IEEE Trans. Magn. 40 371
[10] Fu F, Bowler J R 2008 IEEE Trans. Magn. 42 2029
[11] Xie L, Lei Y Z 2006 Acta Phys. Sin. 55 4397 (in Chinese) [谢 莉、 雷银照 2006 55 4397]
[12] Theodoulidis T P 2008 IEEE Trans. Magn. 42 1894
[13] Dodd C D, Deeds WE 1968 J. Appl. Phys. 39 2829
[14] Fan M B, Huang P J, Ye B, Hou D B, Zhang G X, Zhou Z K 2009 Acta Phys. Sin. 58 5950 (in Chinese) [范孟豹、 黄平捷、 叶 波、 侯迪波、 张光新、 周泽魁 2009 58 5950]
计量
- 文章访问数: 10051
- PDF下载量: 1008
- 被引次数: 0