搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半绝缘GaAs光电导开关的瞬态热效应

施卫 马湘蓉 薛红

引用本文:
Citation:

半绝缘GaAs光电导开关的瞬态热效应

施卫, 马湘蓉, 薛红

Transient thermal effect of semi-insulating GaAs photoconductive switch

Shi Wei, Ma Xiang-Rong, Xue Hong
PDF
导出引用
  • 实验用波长1064 nm,触发光能为1.0 mJ的激光脉冲触发电极间隙为4 mm的半绝缘GaAs光电导开关,当光电导开关的偏置电压达到3800 V时,开关进入非线性(lock-on)工作模式,在偏置电场和触发光能不变的条件下,开关输出稳定的非线性电脉冲,1500次触发后GaAs开关表面出现因丝状电流引起损伤的痕迹.分析认为:在一定触发光能和电场阈值条件下,开关芯片内存在两种瞬态热效应:热弛豫效应和光激发电荷畴-声子曳引效应.热弛豫时间很短,在皮秒甚至亚皮秒量级,热弛豫过程导致了热传导的弛豫行为;当光激发电荷畴以107 cm/s的速度从阴极向阳极渡越时,在这两种效应的作用下使得开关芯片瞬态温度变化发生了弛豫振荡现象.光激发电荷畴-声子曳引效应在位错运动方向上传播,声子流携带的热能集中在移动的平面内,使得移动区域温度升高,移动轨迹经多次叠加累积呈现出丝状的损伤痕迹.
    Results of experiments of the 4 mm gap semi-insulating(SI) GaAs photoconductive switch triggered by 1064 nm, 1.0 mJ pulse laser showed the nonlinear mode when the bias field was 3800 V. Under the same bias electric field and trigger light energy conditions, the switch outputs stably nonlinear electrical pulses, and the switch surface injury mark is caused by filamentation after 1500 times triggering. Analysis shows that under given conditions of trigger energy and electric field, two transient thermal effects occur in the switch chip, namely the thermal relaxation and photoactivated charge domain-phonon drag, respectively. Thermal relaxation time is shortened to the order of picoseconds or subpicoseconds, thermal relaxation process leads to the thermal conduction relaxation. When photoactivated charge domain moves at 107cm/s speed from cathode to anode, switch chip transient temperature makes relaxation oscillations owing to these effects, and the rapid increase of temperature in the chip is constrained. Photoactivated charge domain-phonon drag effect transmits in the direction of the dislocation movement, the temperature in mobile region increases when the flow of thermal energy carried by the phonons was concentrated in the movement plane, the injury of filamentation is produced by superposition and cumulation of mobile tracks.
    • 基金项目: 国家重点基础研究发展计划(批准号:2007CB310406),国家自然科学基金(批准号: 50837005和10876026),电力设备电气绝缘国家重点实验室(批准号:EIPE09203)资助的课题.
    [1]

    Loubrie G M, Zutavem F J, Baca A G, Hjalmarson H P, Plut T A, Helgeson W D, Malley W O, Ruebush M H, Brown D J 1997 IEEE Trans. Plasma Science 25 124

    [2]

    Islam N E, Schamiloglu E, Fledderman B 1998 Appl. Phys. Lett. 73 1988

    [3]

    Shi W, Tian L Q 2006 Appl. Phys. Lett 89 202103

    [4]

    Jia W L, Ji W L, Shi W 2007 Acta Phys. Sin. 56 2042 ( in Chinese) [贾婉丽、纪卫莉、施 卫 2007 56 2042]

    [5]

    Shi W, Wang X M, Hou L, Xu Ming, Liu Zheng 2008 Acta Phys. Sin. 57 6816 (in Chinese ) [施 卫、王馨梅、侯 磊、徐 明、刘 铮 2008 57 6816]

    [6]

    Shi W, Qu G H, Wang X M 2009 Acta Phys. Sin. 58 477 (in Chinese ) [施 卫、屈光辉、王馨梅 2009 58 477]

    [7]

    Liang L, Yu Y H, Peng Y B 2008 Chin. Phys. B 17 2627

    [8]

    Xu X J, Chen S W, Xu H H, Sun Y 2009 Chin. Phys. B 18 3900

    [9]

    Shi W, Zhang X B, Li Q 2002 China. Phys. Lett .19 351

    [10]

    Shi W, Tian L Q 2004 Chinese Journal of Semiconductor 25 691 (in Chinese) [施 卫、田立强 2004 半导体学报 25 691]

    [11]

    Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z 2008 Appl. Phys. Lett. 92 043511

    [12]

    Li J X, Zhang M J, Niu S X and Wang Y C 2008 Chin. Phys. B 17 4516

    [13]

    Liu Y M, Yu Z Y, Ren X M 2009 Chin. Phys. B 18 881

    [14]

    Shah. J, 1978 Solid-State Electron 21 43

    [15]

    Liu J 2001 Micro/Nano-scale Heat Transfer (Beijing: Science Press) p 208 (in Chinese) [刘 静 2001 微米/纳米尺度传热学 (北京:科学出版社) 第208页]

    [16]

    Albert M T Kim, 2001 Ph. D. Dissertation (Massachusetts: Harvard University)

    [17]

    Herring C, Geballe T H, Kunzler J E 1954 Phys. Rev. 94 279

    [18]

    Herring C 1954 Phy. Rev. 92 1163

    [19]

    Herring C 1954 Phy. Rev. 92 857

    [20]

    Cheng Y S, Zhou P Y, Feng Y Q 1996 Physical effect and applications (Tianjin: Tianjin university press) p161 (in Chinese) [陈宜生、周佩瑶、冯艳全 1996 物理效应及其应用 (天津:天津大学出版社) 第161页]

    [21]

    Dugdale J S 1977 The Electrical Properties of Metals and Alloys (Edward Arnold publishers Ltd) p183

    [22]

    Shi W 2001 Chinese Journal of Semiconductors 22 1481

    [23]

    Shi W, Dai H Y, Sun X W 2003 Chinese Optics Letters 1 553

    [24]

    Tian L Q, Shi W 2008 J. Appl. Phys. 103 124512

    [25]

    Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110

    [26]

    Kayasit P, Joshi R P 2001 J. Appl. Phys. 89 1411

    [27]

    Shah J, Leheny R F, Wiegmann W 1977 Phys. Rev. B 16 1577

    [28]

    Zutavern F J, Loubriel G M, Mclaughling D L 1992 Proc. SPIE 1632 152

    [29]

    Kambour K, Kang S, Myles C W, Hjalmarson H P 2000 IEEE Tran. Plasma Science 28 1497

    [30]

    Zutavern F J, Loubriel G M, O’Malley M W, Helgeson W D, Mclaughlin D L 1992 IEEE Power Modulator Symposium, Conference Record of the Twentieth, 23—25 Jun 1992 p305

    [31]

    Peierls R 1940 Proc. Phys. Soc. London 52 34

    [32]

    Nabarro F R N 1947 Proc. Phys. Soc. London 59 256

  • [1]

    Loubrie G M, Zutavem F J, Baca A G, Hjalmarson H P, Plut T A, Helgeson W D, Malley W O, Ruebush M H, Brown D J 1997 IEEE Trans. Plasma Science 25 124

    [2]

    Islam N E, Schamiloglu E, Fledderman B 1998 Appl. Phys. Lett. 73 1988

    [3]

    Shi W, Tian L Q 2006 Appl. Phys. Lett 89 202103

    [4]

    Jia W L, Ji W L, Shi W 2007 Acta Phys. Sin. 56 2042 ( in Chinese) [贾婉丽、纪卫莉、施 卫 2007 56 2042]

    [5]

    Shi W, Wang X M, Hou L, Xu Ming, Liu Zheng 2008 Acta Phys. Sin. 57 6816 (in Chinese ) [施 卫、王馨梅、侯 磊、徐 明、刘 铮 2008 57 6816]

    [6]

    Shi W, Qu G H, Wang X M 2009 Acta Phys. Sin. 58 477 (in Chinese ) [施 卫、屈光辉、王馨梅 2009 58 477]

    [7]

    Liang L, Yu Y H, Peng Y B 2008 Chin. Phys. B 17 2627

    [8]

    Xu X J, Chen S W, Xu H H, Sun Y 2009 Chin. Phys. B 18 3900

    [9]

    Shi W, Zhang X B, Li Q 2002 China. Phys. Lett .19 351

    [10]

    Shi W, Tian L Q 2004 Chinese Journal of Semiconductor 25 691 (in Chinese) [施 卫、田立强 2004 半导体学报 25 691]

    [11]

    Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z 2008 Appl. Phys. Lett. 92 043511

    [12]

    Li J X, Zhang M J, Niu S X and Wang Y C 2008 Chin. Phys. B 17 4516

    [13]

    Liu Y M, Yu Z Y, Ren X M 2009 Chin. Phys. B 18 881

    [14]

    Shah. J, 1978 Solid-State Electron 21 43

    [15]

    Liu J 2001 Micro/Nano-scale Heat Transfer (Beijing: Science Press) p 208 (in Chinese) [刘 静 2001 微米/纳米尺度传热学 (北京:科学出版社) 第208页]

    [16]

    Albert M T Kim, 2001 Ph. D. Dissertation (Massachusetts: Harvard University)

    [17]

    Herring C, Geballe T H, Kunzler J E 1954 Phys. Rev. 94 279

    [18]

    Herring C 1954 Phy. Rev. 92 1163

    [19]

    Herring C 1954 Phy. Rev. 92 857

    [20]

    Cheng Y S, Zhou P Y, Feng Y Q 1996 Physical effect and applications (Tianjin: Tianjin university press) p161 (in Chinese) [陈宜生、周佩瑶、冯艳全 1996 物理效应及其应用 (天津:天津大学出版社) 第161页]

    [21]

    Dugdale J S 1977 The Electrical Properties of Metals and Alloys (Edward Arnold publishers Ltd) p183

    [22]

    Shi W 2001 Chinese Journal of Semiconductors 22 1481

    [23]

    Shi W, Dai H Y, Sun X W 2003 Chinese Optics Letters 1 553

    [24]

    Tian L Q, Shi W 2008 J. Appl. Phys. 103 124512

    [25]

    Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110

    [26]

    Kayasit P, Joshi R P 2001 J. Appl. Phys. 89 1411

    [27]

    Shah J, Leheny R F, Wiegmann W 1977 Phys. Rev. B 16 1577

    [28]

    Zutavern F J, Loubriel G M, Mclaughling D L 1992 Proc. SPIE 1632 152

    [29]

    Kambour K, Kang S, Myles C W, Hjalmarson H P 2000 IEEE Tran. Plasma Science 28 1497

    [30]

    Zutavern F J, Loubriel G M, O’Malley M W, Helgeson W D, Mclaughlin D L 1992 IEEE Power Modulator Symposium, Conference Record of the Twentieth, 23—25 Jun 1992 p305

    [31]

    Peierls R 1940 Proc. Phys. Soc. London 52 34

    [32]

    Nabarro F R N 1947 Proc. Phys. Soc. London 59 256

  • [1] 田立强, 潘璁, 施卫, 潘艺柯, 冉恩泽, 李存霞. GaAs光电导开关非线性模式的雪崩畴输运机理.  , 2023, 72(17): 178101. doi: 10.7498/aps.72.20230711
    [2] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应.  , 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [3] 黄建邦, 南虎, 张锋, 张佳乐, 刘来君, 王大威. 弛豫铁电体弥散相变与热滞效应的伊辛模型.  , 2021, 70(11): 110501. doi: 10.7498/aps.70.20202019
    [4] 屈少华, 曹万强. 球形无规键无规场模型研究弛豫铁电体极化效应.  , 2014, 63(4): 047701. doi: 10.7498/aps.63.047701
    [5] 施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平. 高压超大电流光电导开关及其击穿特性研究.  , 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [6] 施卫, 屈光辉, 王馨梅. 半绝缘GaAs光电导开关非线性电脉冲超快上升特性研究.  , 2009, 58(1): 477-481. doi: 10.7498/aps.58.477
    [7] 施卫, 薛红, 马湘蓉. 半绝缘GaAs光电导开关体内热电子的光电导振荡特性.  , 2009, 58(12): 8554-8559. doi: 10.7498/aps.58.8554
    [8] 桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋 军. 锂原子光电离过程中的弛豫效应.  , 2008, 57(4): 2152-2160. doi: 10.7498/aps.57.2152
    [9] 贾婉丽, 纪卫莉, 施 卫. 半绝缘GaAs光电导开关产生太赫兹波电场屏蔽效应的二维Monte Carlo模拟.  , 2007, 56(4): 2042-2046. doi: 10.7498/aps.56.2042
    [10] 林子扬, 项 颖, 张介立, 马仕永, 徐则达. 相位延迟法平行排列丝状液晶在静磁场中扭曲效应研究.  , 1999, 48(10): 1898-1903. doi: 10.7498/aps.48.1898
    [11] 郭洪霞, 麦振洪. 电导率对电流变效应的影响.  , 1996, 45(1): 65-72. doi: 10.7498/aps.45.65
    [12] 晁月盛, 孙少权, 滕功清, 赖祖涵. 高密度脉冲电流对非晶Fe-Ni-Si-B合金结构弛豫与晶化的促进效应.  , 1996, 45(9): 1506-1512. doi: 10.7498/aps.45.1506
    [13] 姚关华, 徐至展. 光电子谱的峰开关效应.  , 1989, 38(5): 864-868. doi: 10.7498/aps.38.864
    [14] 李玉璋, 徐仲英, 葛惟锟, 许继宗, 郑宝贞, 庄蔚华. 多量子阱结构中热载流子弛豫过程中的非平衡声子效应.  , 1989, 38(9): 1540-1544. doi: 10.7498/aps.38.1540
    [15] 徐仲英, 李玉璋, 徐俊英, 许继宗, 郑宝真, 庄蔚华, 葛惟锟. GaAs-GaAlAs多量子阱结构中热载流子弛豫过程.  , 1987, 36(10): 1336-1343. doi: 10.7498/aps.36.1336
    [16] 李景德. 热电弛豫效应.  , 1984, 33(11): 1563-1568. doi: 10.7498/aps.33.1563
    [17] 夏建白. Si,GaAs(111)表面弛豫效应.  , 1984, 33(2): 143-153. doi: 10.7498/aps.33.143
    [18] 朱镛, 张道范. α-碘酸锂的电流弛豫和偏压场作用下表观介电常数弛豫行为.  , 1980, 29(4): 454-460. doi: 10.7498/aps.29.454
    [19] 初桂荫, 朱化南, 俞祖和, 张治国, 邱元武, 姬国枢, 叶佩弦, 沈元壤, 周赫田. 液晶的四波混频及其弛豫效应.  , 1979, 28(6): 887-890. doi: 10.7498/aps.28.887
    [20] 顾世杰, 霍崇儒. 丝状发光的GaAs注入式半导体激光器中结电流密度与载流子浓度的分布.  , 1979, 28(1): 21-32. doi: 10.7498/aps.28.21
计量
  • 文章访问数:  8937
  • PDF下载量:  1006
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-19
  • 修回日期:  2009-12-07
  • 刊出日期:  2010-04-05

/

返回文章
返回
Baidu
map