搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空位的第一性原理及经验势函数的对比研究

王超营 王振清 孟庆元

引用本文:
Citation:

空位的第一性原理及经验势函数的对比研究

王超营, 王振清, 孟庆元

Comparative study of the first-principles and empirical potential simulation of vacancies in silicon

Wang Chao-Ying, Wang Zhen-Qing, Meng Qing-Yuan
PDF
导出引用
  • 利用第一性原理及Stillinger-Weber(SW),EDIP和Tersoff经验势函数对比研究了硅中单空位(V1)、双空位(V2)和六边形空位环(V6)的结构特性及形成能.讨论了经验势函数描述空位时的优点和缺点.结果发现,第一性原理方法可以精确描述空位的原子结构及能量特性,而短程有效的经验势函数无法描述空位所固有的量子效应,如Jahn-Teller变形等.另外,由于经验势函数自身的缺陷,EDIP和T3无法应用于空位结构特性的计算.虽然
    Structural properties and formation energies of monovacancy (V1), divacancy (V2) and hexavacancy (V6) in silicon have been comparatively studied with density functional theory (DFT), Stillinger-Weber (SW), EDIP and Tersoff methods. The validity and shortcomings of the three classical potentials are discussed in detail. It is found that the DFT method may provide accurate description of atomic structures and energies of vacancies. As to the empirical potentials, they cannot be used to investigate quantum mechanical effects such as Jahn-Teller distortion ocurring in the DFT relaxations. Moreover, EDIP and T3 give an outward relaxation in all cases, which is contrary to the DFT and SW directions. Therefore, they are unsuitable to the structural property calculations. Based on the results calculated mainly for structure properties and formation energies, it can be concluded that SW should be the best potential to describe V1, V2 and V6.
    • 基金项目: 国家自然科学基金(批准号:10772062)资助的课题.
    [1]

    [1]Myronov M, Shiraki Y 2007 Jpn. J. Appl. Phys. Part 1. 46 721

    [2]

    [2]Dannefaer S, Mascher P, Kerr D 1986 Phys. Rev. Lett. 56 2195

    [3]

    [3]Wright A F 2006 Phys. Rev. B 74 165116

    [4]

    [4]EI-Mellouhi F, Mousseau N, Ordejon P 2004 Phys. Rev. B 70 205202

    [5]

    [5]Probert M I J, Payne M C 2003 Phys. Rev. B 67 075204

    [6]

    [6]Puska M J, Poykko S, Pesola M, Nieminen R M 1998 Phys. Rev. B 58 1318

    [7]

    [7]Lento J, Nieminen R M 2003 J. Phys.: Condens. Matter 15 4387

    [8]

    [8]Schultz P A 2006 Phys. Rev. Lett. 96 246401

    [9]

    [9]Justo J F, Bazant M Z, Kaxiras E, Bulatov V V, Yip S 1998 Phys. Rev. B 58 2539

    [10]

    ]Balamane H, Halicioglu T, Tiller W A 1992 Phys. Rev. B 46 2250

    [11]

    ]Watkins G D, Corbett J W 1965 Phys. Rev. 138 A543

    [12]

    ]Nagai Y, Inoue K, Tang Z, Yonenaga I, Chiba T, Saito M, Hasegawa M 2003 Physica B 340-342 518

    [13]

    ]Iwata J I, Shiraishi K, Oshiyama A 2008 Phys. Rev. B 77 115208

    [14]

    ]Wixom R R, Wright A F 2006 Phys. Rev. B 74 205208

    [15]

    ]Ogut S, Chelikowsky J R 2001 Phys. Rev. B 64 245206

    [16]

    ]Ogut S, Chelikowsky J R 1999 Phys. Rev. Lett. 83 3852

    [17]

    ]Saito M, Oshiyama A 1994 Phys. Rev. Lett. 73 866

    [18]

    ]Chadi D J, Chang K J 1988 Phys. Rev. B 38 1523

    [19]

    ]Makhov D V, Lewis L J 2004 Phys. Rev. Lett. 92 255504

    [20]

    ]Akiyama T, Oshiyama A 2001 J. Phys. Soc. Jpn. 70 1627

    [21]

    ]Hastings J L, Estreicher S K, Fedders P A 1997 Phys. Rev. B 56 10215

    [22]

    ]Staab T E M, Sieck A, Haugk M, Puska M J, Frauenheim Th, Leipner H S 2002 Phys. Rev. B 65 115210

    [23]

    ]Qiao Y H, Wang S Q 2005 Acta Phys. Sin. 54 4827 (in Chinese) [乔永红、 王绍青 2005 54 4827]

    [24]

    ]Duesbery M S, Joos B, Michel D 1991 Phys. Rev. B 43 5143

    [25]

    ]Poon T W, Yip S, Ho P S, Abraham F F 1990 Phys. Rev. Lett. 65 2161

    [26]

    ]Porter L J, Yip S, Yamaguchi M, Kaburaki H, Tang M 1997 J. Appl. Phys. 81 96

    [27]

    ]Godet J, Pizzagalli L, Brochard S, Beauchamp P 2003 J. Phys.: Condens. Matter 15 6943

    [28]

    ]Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262

    [29]

    ]Bazant M Z, Kaxiras E, Justo J F 1997 Phys. Rev. B 56 8542

    [30]

    ]Tersoff J 1989 Phys. Rev. B 39 5566

    [31]

    ]Sanchez-Portal D, Ordejon P, Artacho E, Soler J M 1997 Int. J. Quantum Chem. 65 453

    [32]

    ]Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [33]

    ]Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [34]

    ]Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [35]

    ]Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    ]Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical Recipes in Fortran (2nd ed) (Cambridge: Cambridge University)

    [37]

    ]Kittel C 1986 Introduction to Solid State Physics (New York: Wiley)

    [38]

    ]Gunnarsson O, Jepsen O andAndersen O K 1983 Phys. Rev. B 27 7144

    [39]

    ]Scheffler M, Vigneron J P, Bachelet G B 1985 Phys. Rev. B 31 6541

    [40]

    ]Wang C Z, Chan C T, Ho K M 1991 Phys. Rev. Lett. 66 189

    [41]

    ]Song E G, Kim E, Lee Y H, Hwang Y G 1993 Phys. Rev. B 48 1486

  • [1]

    [1]Myronov M, Shiraki Y 2007 Jpn. J. Appl. Phys. Part 1. 46 721

    [2]

    [2]Dannefaer S, Mascher P, Kerr D 1986 Phys. Rev. Lett. 56 2195

    [3]

    [3]Wright A F 2006 Phys. Rev. B 74 165116

    [4]

    [4]EI-Mellouhi F, Mousseau N, Ordejon P 2004 Phys. Rev. B 70 205202

    [5]

    [5]Probert M I J, Payne M C 2003 Phys. Rev. B 67 075204

    [6]

    [6]Puska M J, Poykko S, Pesola M, Nieminen R M 1998 Phys. Rev. B 58 1318

    [7]

    [7]Lento J, Nieminen R M 2003 J. Phys.: Condens. Matter 15 4387

    [8]

    [8]Schultz P A 2006 Phys. Rev. Lett. 96 246401

    [9]

    [9]Justo J F, Bazant M Z, Kaxiras E, Bulatov V V, Yip S 1998 Phys. Rev. B 58 2539

    [10]

    ]Balamane H, Halicioglu T, Tiller W A 1992 Phys. Rev. B 46 2250

    [11]

    ]Watkins G D, Corbett J W 1965 Phys. Rev. 138 A543

    [12]

    ]Nagai Y, Inoue K, Tang Z, Yonenaga I, Chiba T, Saito M, Hasegawa M 2003 Physica B 340-342 518

    [13]

    ]Iwata J I, Shiraishi K, Oshiyama A 2008 Phys. Rev. B 77 115208

    [14]

    ]Wixom R R, Wright A F 2006 Phys. Rev. B 74 205208

    [15]

    ]Ogut S, Chelikowsky J R 2001 Phys. Rev. B 64 245206

    [16]

    ]Ogut S, Chelikowsky J R 1999 Phys. Rev. Lett. 83 3852

    [17]

    ]Saito M, Oshiyama A 1994 Phys. Rev. Lett. 73 866

    [18]

    ]Chadi D J, Chang K J 1988 Phys. Rev. B 38 1523

    [19]

    ]Makhov D V, Lewis L J 2004 Phys. Rev. Lett. 92 255504

    [20]

    ]Akiyama T, Oshiyama A 2001 J. Phys. Soc. Jpn. 70 1627

    [21]

    ]Hastings J L, Estreicher S K, Fedders P A 1997 Phys. Rev. B 56 10215

    [22]

    ]Staab T E M, Sieck A, Haugk M, Puska M J, Frauenheim Th, Leipner H S 2002 Phys. Rev. B 65 115210

    [23]

    ]Qiao Y H, Wang S Q 2005 Acta Phys. Sin. 54 4827 (in Chinese) [乔永红、 王绍青 2005 54 4827]

    [24]

    ]Duesbery M S, Joos B, Michel D 1991 Phys. Rev. B 43 5143

    [25]

    ]Poon T W, Yip S, Ho P S, Abraham F F 1990 Phys. Rev. Lett. 65 2161

    [26]

    ]Porter L J, Yip S, Yamaguchi M, Kaburaki H, Tang M 1997 J. Appl. Phys. 81 96

    [27]

    ]Godet J, Pizzagalli L, Brochard S, Beauchamp P 2003 J. Phys.: Condens. Matter 15 6943

    [28]

    ]Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262

    [29]

    ]Bazant M Z, Kaxiras E, Justo J F 1997 Phys. Rev. B 56 8542

    [30]

    ]Tersoff J 1989 Phys. Rev. B 39 5566

    [31]

    ]Sanchez-Portal D, Ordejon P, Artacho E, Soler J M 1997 Int. J. Quantum Chem. 65 453

    [32]

    ]Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [33]

    ]Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [34]

    ]Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [35]

    ]Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    ]Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical Recipes in Fortran (2nd ed) (Cambridge: Cambridge University)

    [37]

    ]Kittel C 1986 Introduction to Solid State Physics (New York: Wiley)

    [38]

    ]Gunnarsson O, Jepsen O andAndersen O K 1983 Phys. Rev. B 27 7144

    [39]

    ]Scheffler M, Vigneron J P, Bachelet G B 1985 Phys. Rev. B 31 6541

    [40]

    ]Wang C Z, Chan C T, Ho K M 1991 Phys. Rev. Lett. 66 189

    [41]

    ]Song E G, Kim E, Lee Y H, Hwang Y G 1993 Phys. Rev. B 48 1486

  • [1] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究.  , 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [2] 彭军辉, TikhonovEvgenii. 三元Hf-C-N体系的空位有序结构及其力学性质和电子性质的第一性原理研究.  , 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [3] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究.  , 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] 付宝勤, 侯氢, 汪俊, 丘明杰, 崔节超. 钨空位捕获氢及其解离过程的分子动力学.  , 2019, 68(24): 240201. doi: 10.7498/aps.68.20190701
    [5] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究.  , 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [6] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究.  , 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [7] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究.  , 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [8] 牛海波, 陈光德, 伍叶龙, 耶红刚. 空位对纤锌矿型AlN自发极化影响的最大局域化Wannier函数方法研究.  , 2014, 63(16): 167701. doi: 10.7498/aps.63.167701
    [9] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算.  , 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [10] 徐爽, 郭雅芳. 纳米铜薄膜塑性变形中空位型缺陷形核与演化的分子动力学研究.  , 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [11] 魏哲, 袁健美, 李顺辉, 廖建, 毛宇亮. 含空位二维六角氮化硼电子和磁性质的密度泛函研究.  , 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [12] 侯清玉, 乌云格日乐, 赵春旺. 高氧空位浓度对金红石TiO2导电性能影响的第一性原理研究.  , 2013, 62(16): 167201. doi: 10.7498/aps.62.167201
    [13] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性.  , 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [14] 何旭, 何林, 唐明杰, 徐明. 第一性原理研究空位点缺陷对高压下LiF的电子结构和光学性质的影响.  , 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [15] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究.  , 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [16] 侯清玉, 张 跃, 张 涛. 高氧空位浓度对锐钛矿TiO2莫特相变和光谱红移及电子寿命影响的第一性原理研究.  , 2008, 57(3): 1862-1866. doi: 10.7498/aps.57.1862
    [17] 侯清玉, 张 跃, 张 涛. 高氧空位简并锐钛矿TiO2半导体电子寿命的第一性原理研究.  , 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [18] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究.  , 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [19] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究.  , 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [20] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟.  , 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
计量
  • 文章访问数:  8743
  • PDF下载量:  612
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-22
  • 修回日期:  2009-09-14
  • 刊出日期:  2010-05-15

/

返回文章
返回
Baidu
map