-
本文应用戴逊表示对层子击出图形进行更严格的研究,以考察:这种机制是否确能给出无标度性;如果能够,它是否要求层子质量很小,以及ν和q2取大值的具体标准是什么?结果表明,在ν足够大时,层子击出图形能给出无标度性,但最初结果与Bjorken的不同,这里得到的是W1=νf1(x),W2=f2(x)。只有借助于击出图形为主(对深度非弹性散射)的假定,应用规范条件,才能压低W1和W2而得到Bjorken无标度性。另外,无标度性的得出,只要求ν取大值(按照某些确定的标准),对q2并无限制。层子质量M亦不要求比核子小。理论上,对于任意的M值,只要ν足够大,都将得到无标度性。The straton knocked-out diagram is investigated more strictly using the Dyson representation, to clarify: whether the scaling property can indeed be derived from this mechanism and, if so, whether the straton mass is required to be small, and what are the definite criterions for the largeness of v and q2. It is shown that, for large values of v, the straton knocked-out diagram does lead to a scaling property, but the primary result is W1 = vf1(x) and w2 = f2(x), which differs from that of Bjorken. Only by assuming the knocked-out diagram dominance (for deep inelastic scattering) and using the gauge condition, can W1 and W2 be suppressed, thus obtaining the Bjorken scaling. Furthermore, the derivation of scaling merely requires v to be large (according to some definite criterions), but places no restriction on q2. The straton mass M is also not required to be smaller than the nucleon mass. Theoretically, for an arbitrary M, the scaling property can always be derived, provided v is sufficiently large.
[1] -
[1]
计量
- 文章访问数: 11170
- PDF下载量: 543
- 被引次数: 0