搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市移动流量模型的跨尺度比较方法

张洋 石武 谭索怡 牟建红 周逸龙 余宏杰 吕欣

引用本文:
Citation:

城市移动流量模型的跨尺度比较方法

张洋, 石武, 谭索怡, 牟建红, 周逸龙, 余宏杰, 吕欣

Multi-scalar comparison methods for urban mobility models

ZHANG Yang, SHI Wu, TAN Suoyi, MOU Jianhong, ZHOU Yilong, YU Hongjie, LU Xin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 随着城市化进程的加速,城市人口流动的精准预测成为城市规划与政策制定的重要基础.然而,现有移动模型在城市场景下的适应性尚不明确,且缺乏系统性比较,在不同尺度下的有效性尚不清晰.本文提出一种城市移动流量模型的跨尺度比较方法,系统分析了引力模型、辐射模型、人口权重机会模型在不同空间、距离和人口尺度下的表现.基于上海移动数据的实证研究表明,引力模型受距离影响较小,但受人口密度和区域面积差异显著影响,性能随人口规模上升而增强,随面积差异增大而衰减(网格边长差值大于3km时性能下降40%);辐射模型对出发地属性敏感,预测能力随出发地空间尺度和人口规模增加而增强,小尺度场景存在系统性偏差;人口权重机会模型通过人口权重机制在空间尺度上表现出优异的兼容性,但随着距离增大效果下降,并与人口规模正相关.研究结果揭示了城市移动流量模型的适用场景和局限性,为多场景下模型选择及优化提供了可操作的决策框架.
    With accelerating urbanization, accurately predicting intra-urban population mobility has become a fundamental requirement for urban planning and policy formulation. However, the adaptability and performance of existing mobility models across spatial scales remain unclear, and there is a lack of systematic evaluation frameworks that integrate spatial granularity, travel distance, and population heterogeneity. This study addresses these gaps by proposing a cross-scale comparative framework to evaluate three representative mobility models—the Gravity Model (GM), Radiation Model (RM), and Population-Weighted Opportunities Model (PWO)—under varying urban conditions.
    We construct three groups of controlled experiments using high-resolution mobile phone data from Shanghai to assess model performance across spatial (grid size), distance, and population density scales. Furthermore, we apply multivariate analysis of variance (MANOVA) to decompose the relative contributions of different spatial factors to prediction errors.
    The results demonstrate distinct scale sensitivities among the models. The GM model, grounded in Newtonian gravitational principles, shows high robustness over longer distances (>5 km), yet suffers from performance degradation under fine spatial granularity due to spatial heterogeneity. Its accuracy improves with population scale but decreases significantly when regional area disparities exceed a threshold—prediction performance drops by over 40% when grid size differences surpass 3 km. The RM model, based on the nearest-best-opportunity assumption, performs well for short-distance, origin-driven flows, such as commuting, but introduces systematic bias in small-scale contexts. Its sensitivity to origin population density makes it more suitable for high-density urban cores. The PWO model enhances RM by incorporating destination population weights, exhibiting superior compatibility with spatial heterogeneity in dense, polycentric cities. It performs best at short distances (<5 km) but loses effectiveness as travel distance increases.
    MANOVA results confirm that GM is primarily influenced by population density and area scale, whereas RM and PWO are more sensitive to distance and destination-related factors. Based on these findings, we propose a model selection strategy tailored to mobility drivers: GM is recommended for long-distance prediction in spatially homogeneous regions, while PWO is preferred for short-range flows between small, densely populated areas. RM serves as a complementary model when origin-driven flows dominate.
    This study not only clarifies the physical mechanisms underlying scale-dependent model performance but also offers an actionable decision-making framework for selecting appropriate models in different urban mobility scenarios. Future research can further improve predictive accuracy by developing hybrid models that combine strengths of multiple frameworks, integrating multi-source spatial data such as POIs and land use, and coupling traditional models with deep learning approaches to enhance non-linear pattern recognition while preserving interpretability. By uncovering the scale-sensitivity of mobility models, this work lays a theoretical and methodological foundation for multi-scenario mobility forecasting in smart city planning and fine-grained urban governance.
  • [1]

    Batty M 2008 Science 319 769

    [2]

    Andrienko G, Andrienko N, Boldrini C, Caldarelli G, Cintia P, Cresci S, Facchini A, Giannotti F, Gionis A, Guidotti R, Mathioudakis M, Muntean C I, Pappalardo L, Pedreschi D, Pournaras E, Pratesi F, Tesconi M, Trasarti R 2021 Int. J. Data. Sci. Anal. 11 311

    [3]

    Barbosa H, Barthelemy M, Ghoshal G, James C R, Lenormand M, Louail T, Menezes R, Ramasco J J, Simini F, Tomasini M 2018 Phys. Rep. 734 1

    [4]

    Xu Y, Belyi A, Bojic I, Ratti C 2018 Comput. Environ. Urban Syst. 72 51

    [5]

    Guo Y T, Peeta S 2020 Travel Behav. Soc. 19 99

    [6]

    Helbing D 2001 Rev. Mod. Phys. 73 1067

    [7]

    Toole J L, Colak S, Sturt B, Alexander L P, Evsukoff A, González M C 2015 Transp. Res. Part C Emerging Technol. 58 162

    [8]

    Voukelatou V, Gabrielli L, Miliou I, Cresci S, Sharma R, Tesconi M, Pappalardo L 2021 Int. J. Data. Sci. Anal. 11 279

    [9]

    Louf R, Barthelemy M 2014 Sci. Rep. 4 5561

    [10]

    Hufnagel L, Brockmann D, Geisel T 2004 Proc. Natl. Acad. Sci. 101 15124

    [11]

    Xiong C F, Hu S H, Yang M F, Luo W Y, Zhang L 2020 Proc. Natl. Acad. Sci. 117 27087

    [12]

    NaDai M D, Xu Y Y, Letouzé E, González M C, Lepri B 2020 Sci. Rep. 10 13871

    [13]

    Simini F, Barlacchi G, Luca M, Pappalardo L 2021 Nat. Commun. 12 6576

    [14]

    Yao X, Gao Y, Zhu D, Manley E, Wang J, Liu Y 2021 IEEE Trans. Intell. Transp. Syst. 22 7474

    [15]

    Liu Z C, Miranda F, Xiong W T, Yang J Y, Wang Q, Silva C 2020 AAAI 34 808

    [16]

    Dai G N, Hu X Y, Ge Y M, Ning Z Q, Liu Y B 2021 Front. Comput. Sci. 15 152317

    [17]

    Tian C J, Zhu X N, Hu Z, Ma J 2020 Appl. Intell. 50 3057

    [18]

    Luca M, Barlacchi G, Lepri B, Pappalardo L 2023 ACM Comput. Surv. 55 1

    [19]

    Zipf G K 1946 Am. Sociol. Rev. 11 677

    [20]

    Goh S, Lee K, Park J S, Choi M Y 2012 Phys. Rev. E 86 26102

    [21]

    Krings G, Calabrese F, Ratti C, Blondel V D 2009 J. Stat. Mech:Theory Exp. 2009 L07003

    [22]

    Prieto Curiel R, Pappalardo L, Gabrielli L, Bishop S R 2018 PLOS One 13 e0199892

    [23]

    Wang Y X, Li X, Yao X, Li S, Liu Y 2022 Ann. Am. Assoc. Geogr. 112 1441

    [24]

    Brockmann D, Helbing D 2013 Science 342 1337

    [25]

    Stouffer S A 1940 Am. Sociol. Rev. 5 845

    [26]

    Ortúzar J D D, Willumsen L G 2011 Modelling Transport. 1st edn.(Wiley), pp 207-208

    [27]

    Simini F, González M C, Maritan A, Barabási A L 2012 Nature 484 96

    [28]

    Yan X Y, Zhao C, Fan Y, Di Z R, Wang W X 2014 J. R. Soc. Interface 11 20140834

    [29]

    Liu E J, Yan X Y 2019 Physica A 526 121023

    [30]

    Liu E J, Yan X Y 2020 Sci. Rep. 10 4657

    [31]

    Yan X Y, Zhou T 2019 Sci. Rep. 9 9466

    [32]

    Lawson H C, Dearinger J A 1967 J. Highw. Div. 93 1

    [33]

    Liang X, Zhao J C, Dong L, Xu K 2013 Sci. Rep. 3 2983

    [34]

    Okabe A 1976 Reg. Sci. Urban Econ. 6 381

    [35]

    Hong I, Jung W S, Jo H H 2019 PLOS ONE 14 e0218028

    [36]

    Kluge L, Schewe J 2021 Phys. Rev. E 104 54311

    [37]

    Piovani D, Arcaute E, Uchoa G, Wilson A, Batty M 2018 R. Soc. Open Sci. 5 171668

    [38]

    Stefanouli M, Polyzos S 2017 Transp. Res. Procedia 24 65

    [39]

    Yang Y X, Herrera C, Eagle N, González M C 2014 Sci. Rep. 4 5662

    [40]

    Heydari S, Huang Z, Hiraoka T, De León Chávez A P, Ala-Nissila T, Leskelä L, Kivelä M, Saramäki J 2023 Travel Behav. Soc. 31 93

    [41]

    Masucci A P, Serras J, Johansson A, Batty M 2013 Phys. Rev. E 88 22812

    [42]

    Palchykov V, Mitrović M, Jo H H, Saramäki J, Pan R K 2014 Sci. Rep. 4 6174

    [43]

    Lenormand M, Bassolas A, Ramasco J J 2016 J. Transp. Geogr. 51 158

    [44]

    Lenormand M, Huet S, Gargiulo F, Deffuant G 2012 PLoS One 7 e45985

    [45]

    Gargiulo F, Lenormand M, Huet S, Baqueiro Espinosa O 2012 Jasss. 15 6

  • [1] 梁宗文, 廖俊卓, 薛崇琛, 敖永才. 双维引力场模型: 个体潜能与地理位置对节点性能的量化评估.  , doi: 10.7498/aps.74.20241256
    [2] 强琪超, 彭智谦, 郜青. S-dual模型产生的原初黑洞和次级引力波.  , doi: 10.7498/aps.72.20230605
    [3] 阮逸润, 老松杨, 汤俊, 白亮, 郭延明. 基于引力方法的复杂网络节点重要度评估方法.  , doi: 10.7498/aps.71.20220565
    [4] 刘二见, 闫小勇. 预测人类移动行为的介入机会类模型研究进展.  , doi: 10.7498/aps.69.20201119
    [5] 魏文叶, 申佳音, 吴奕暐, 杨礼想, 薛迅, 阮自强. 大尺度有效引力的E(2)规范理论模型.  , doi: 10.7498/aps.66.130301
    [6] 李多芳, 曹天光, 耿金鹏, 展永. 电离辐射致植物诱变效应的损伤-修复模型.  , doi: 10.7498/aps.64.248701
    [7] 张玉梅, 吴晓军, 白树林. 交通流量序列混沌特性分析及DFPSOVF预测模型.  , doi: 10.7498/aps.62.190509
    [8] 孟庆芳, 陈月辉, 冯志全, 王枫林, 陈珊珊. 基于局域相关向量机回归模型的小尺度网络流量的非线性预测.  , doi: 10.7498/aps.62.150509
    [9] 巩永旺, 宋玉蓉, 蒋国平. 移动环境下网络病毒传播模型及其稳定性研究.  , doi: 10.7498/aps.61.110205
    [10] 陈伟华, 杜磊, 庄奕琪, 包军林, 何亮, 张天福, 张雪. MOS结构电离辐射效应模型研究.  , doi: 10.7498/aps.58.4090
    [11] 樊华, 李理, 袁坚, 山秀明. 互联网流量控制的朗之万模型及相变分析.  , doi: 10.7498/aps.58.7507
    [12] 钱江海, 韩定定. 基于预期流优化的空间网络引力模型.  , doi: 10.7498/aps.58.3028
    [13] 覃 森, 戴冠中, 王 林, 范 明. 一类权重网络的加速演化模型.  , doi: 10.7498/aps.56.6326
    [14] 周华亮, 高自友, 李克平. 准移动闭塞系统的元胞自动机模型及列车延迟传播规律的研究.  , doi: 10.7498/aps.55.1706
    [15] 颜 骏, 陶必友. Einstein-Maxwell-dilaton引力模型中的5维宇宙膜解.  , doi: 10.7498/aps.53.2843
    [16] 张钧, 裴文兵, 古培俊, 隋成之, 常铁强. 辐射烧蚀的自调制准定态模型.  , doi: 10.7498/aps.45.1677
    [17] 何林, 邓永元. 超荧光辐射的热力学模型分析.  , doi: 10.7498/aps.44.80
    [18] 阎永廉, 秦荣先. 集中质量音叉式引力波天线的三自由度模型.  , doi: 10.7498/aps.32.1586
    [19] 张元仲, 郭汉英. 关于矢量-张量引力相互作用模型.  , doi: 10.7498/aps.31.1554
    [20] 潘少华, 罗棨光, 刘福绥. A-15超导化合物的d带相对移动模型.  , doi: 10.7498/aps.29.836
计量
  • 文章访问数:  91
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-27

/

返回文章
返回
Baidu
map