搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分光镜厚度对双臂Tolansky干涉自准直仪测角准确性的影响

方振远 张宝武 崔建军 张斌 陈恺 许子杰 朱玲 孙怡 罗贤欢

引用本文:
Citation:

分光镜厚度对双臂Tolansky干涉自准直仪测角准确性的影响

方振远, 张宝武, 崔建军, 张斌, 陈恺, 许子杰, 朱玲, 孙怡, 罗贤欢

Effect of beam splitter thickness on angle measurement accuracy of dual-arm Tolansky interferometric autocollimator

Fang Zhenyuan, Zhang Baowu, Cui Jianjun, Zhangbin, Chenkai, Xu Zijie, Zhuling, Sunyi, Luo Xianhuan
PDF
导出引用
  • 为了解决Tolansky干涉微小角度测量过程依赖动镜测量臂臂长的问题,提出了一种双臂Tolansky干涉自准直测角方案,针对其中分光镜厚度对测角准确性的影响,利用几何光学的单折射球面公式和过渡公式分析了分光镜厚度影响下的虚拟点光源位置,建立了包含分光镜厚度和折射率的圆心偏转量与偏转角之间的关系,通过虚拟仿真和实体实验相结合的方式详细考察了分光镜厚度对测角准确性的影响。结果显示,分光镜厚度不同会影响初始圆心的位置;随着分光镜厚度的增加,不同角度下,仿真测量结果与含厚度因素关系式理论值的相对偏差在±0.5%以内;在同一角度下,所建立的含厚度因素关系式与不含厚度因素关系式的差值逐渐增大。在1mm分光镜的厚度下,以已标定自准直仪所测导轨数据为准,所建立的含厚度因素关系式与不含厚度因素关系式的相对误差仅为0.22%。研究结果为这种新型自准直仪的深度研究和开发提供了重要的指导。
    In order to solve the problem that the measurement arm length needs to be obtained in real time when calculating the measurement angle in the process of Tolansky interference small angle measurement, a dual-arm Tolansky interference autocollimation angle measurement scheme is proposed, which not only maintains the function of Tolansky interference, but also integrates the principle of optical leverage. In the simulation study, it is found that the splitter with thickness in the scheme will lead to the lateral offset of the optical axis of the emitted light, which will change the position of the virtual point light source, and finally change the position of the center of the interference circle on the detector. 1) Research purpose: In order to reduce the influence of the thickness of the beam splitter on the angle measurement accuracy of the angle measurement scheme, the optical path structure of the angle measurement scheme is redrawn, and the relationship between the center offset of the interference ring and the deflection angle which contains the thickness factor and can accurately describe the optical path is deduced. 2) Method: First, redraw the measurement optical path of the splitter with a thickness factor, and partially enlarge the splitter, and replace the original beam with the center line of the laser beam to draw the optical path. Then, the position of the virtual point light source under the influence of the thickness of the splitter is analyzed by using the single refraction spherical formula and the transition formula of geometric optics, and the relationship between the offset of the interference center and the deflection angle with the thickness of the splitter is established. Secondly, the coordinate information of the center of the interference ring under different thickness parameters of the splitter is obtained by using the virtual simulation experiment, which proves the correctness of the theoretical analysis. Then, simulation experiments such as simulation measurement of multiple sets of setting angles and angle measurement under different splitter thickness conditions were carried out, and the accuracy of the relationship including the splitter thickness factor deduced above was cross-validated. Finally, combined with the actual experiment, a guide rail is measured together with the calibrated autocollimator, and the influence of the thickness of the beam splitter on the accuracy of the angle measurement is investigated in detail. 3) Results : Experiments show that the thickness of the splitter will affect the position of the initial center of the circle ; with the increase of the thickness of the splitter, the error between the simulation measurement results and the relationship including the thickness factor is within ±0.5 % at different angles, and the data are in good agreement. At the same angle, as the thickness of the beam splitter increases, the difference between the established relationship and the approximate relationship gradually increases. Under the thickness of 1mm beam splitter, the relative error between the established relationship and the calculated value of the approximate relationship is only 0.22 % based on the data of the guide rail measured by the calibrated autocollimator. 4) Conclusion: Through the combination of theoretical analysis, simulation experiment and physical measurement, the optical path of introducing the thickness of the spectroscope glass is analyzed, and the relationship including the thickness factor is deduced. The experiment proves that the use of a smaller thickness of the spectroscope can effectively reduce the calculation and measurement error, which provides an important guidance for the in-depth research and development of this new autocollimator.
  • [1]

    She C, Xu L, Shan X D, Zhu H, Zhou Y, Wang Q L. 2021Appl. Opt 60 8016

    [2]

    Shimizu Y, Matsukuma H, Wei G. 2019 Sensors 19 1

    [3]

    Zhao Y K, Fan X W, Wang C C, Lu L. 2020Opt Lasers Eng 126

    [4]

    Geckeler R D., Krause M, Just A, Kranz O, Bosse H. 2015Measurement 73 231

    [5]

    Zhang M S. 2021J. Phys. Conf. Ser 1952

    [6]

    Fu P, Zhang Y C, Zhao T, Zhao Y M, Tang S, Li Y, Han SH D. 2023Chin. J. Lasers 1(in Chinese)[付鹏,张艳春,赵涛,赵勇明,唐松,李颖,韩沈丹2023中国激光1].

    [7]

    Wang S X, Kong L B, Wang C J, Cheung C F. 2023Opt. Express 31 2234

    [8]

    Wu C G, Shen X Y. 2023 Journal of China Jiliang University 34(in Chinese)[吴晨光,沈小燕2023中国计量大学学报34]

    [9]

    Wu C G, Shen X Y, Zhou S N. 2023China Measurement& Test 1(in Chinese)[吴晨光,沈小燕,周世男2023中国测试1]

    [10]

    Chen Q X. 2006Infrared 8 33.(in Chinese)[陈秋霞2006红外8 33]

    [11]

    Chen Y, Zhang X D, Lu X L, Zhang Z Y, Pan L N. 2011OME Information 28 6(in Chinese)[陈颖,张学典,逯兴莲,张振一,潘丽娜2011光机电信息28 6]

    [12]

    Wei X,Weihe X,NATHALIE B, Zhou J, Yan H F, Huang X J, Huang L, Lu M, MAXIM Z, Chu Y S., EVGENY N. 2023Opt. Lasers Eng 161

    [13]

    Chen L,Zhou S Y, Li H S, Yang Y T, Wu G H. 2024Opt. Lett 49 526

    [14]

    Guo C Y, Zhou Z J, Wu R, Su Z Y. 2024Opt. Fiber Technol 86103841

    [15]

    Larichev R A, Filatov Y V. 2013J. Opt. Technol 80 554

    [16]

    A. N. Korolev, A. I. Gartsuev, G. S. Polishchuk, V. P. Tregub.2009J. Opt. Technol 76 624

    [17]

    M.Z. S, Shu T L. 2005KEM 295-296 337

    [18]

    Zhang B W, Cui J J, Ouyang Y F, Chen K, Fang Z Y. 2023Acta Metrologica Sinica 44 1202(in Chinese)[张宝武,崔建军,欧阳烨锋,陈恺,方振远2023计量学报44 1202]

    [19]

    Ouyang Y F, Xu Z J, Zhang B W, Zhu L, Fang Z Y, Luo X H, Sun Y. 2024Acta Optica Sinica 44245(in Chinese)[欧阳烨锋,许子杰,张宝武,朱玲,方振远,罗贤欢,孙怡2024光学学报44 245]

    [20]

    Xu Z J, Zhang B W, Shi J H, Ouyang Y F, Zhu L, Fang Z Y. 2024Optical Technique 50 459(in Chinese)[许子杰,张宝武,施江焕,欧阳烨锋,朱玲,方振远2024光学技术50 459]

    [21]

    Zhang B W, Xu Z J, Shi J H, Zhu L, Fang Z Y, Sun Y, Luo X H. 2024Journal of China Jiliang University 35 1(in Chinese)[张宝武,许子杰,施江焕,朱玲,方振远,孙怡,罗贤欢2024中国计量大学学报35 1]

    [22]

    Ouyang Y F, Li Y B, Zhu Ling, Fang Z Y, Xue C W.2024Journal of China Jiliang University 34 541(in Chinese)[欧阳烨锋,张宝武,李玉彬,朱玲,方振远,薛财文2024中国计量大学学报34 541]

    [23]

    Ouyang Y F, Cui J J, Zhang B W, Chen K, Yang N, Fang Z Y. 2024 Laser Technology 48 135(in Chinese)[欧阳烨锋,崔建军,张宝武,陈恺,杨宁,方振远2024激光技术48 135]

  • [1] 孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟, 刘学斌. 多普勒差分干涉仪干涉图信噪比对相位不确定度研究.  , doi: 10.7498/aps.69.20191179
    [2] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟.  , doi: 10.7498/aps.68.20190051
    [3] 李荣凤, 高树超, 肖朝凡, 徐智怡, 薛兴泰, 刘建波, 赵研英, 陈佳洱, 卢海洋, 颜学庆. 激光尾波场驱动准连续小角度电子束研究进展.  , doi: 10.7498/aps.66.154101
    [4] 刘伟波, 董丽芳. 介质阻挡放电中同心圆环斑图的产生机理.  , doi: 10.7498/aps.64.245202
    [5] 韩奎, 王子煜, 沈晓鹏, 吴琼华, 童星, 唐刚, 吴玉喜. 基于光子晶体自准直和带隙效应的马赫-曾德尔干涉仪设计.  , doi: 10.7498/aps.60.044212
    [6] 张淳民, 朱兰艳. 新型偏振风成像干涉仪中偏振化方向对调制度和干涉强度的影响研究.  , doi: 10.7498/aps.59.989
    [7] 严新革, 张淳民, 赵葆常. 时空混合调制型偏振干涉成像光谱仪干涉图获取模式研究.  , doi: 10.7498/aps.59.3123
    [8] 简小华, 张淳民, 张霖, 赵葆常, 朱兰艳. 利用偏振干涉成像光谱仪进行偏振检测的最佳角度分析.  , doi: 10.7498/aps.58.2286
    [9] 袁志林, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪信噪比研究.  , doi: 10.7498/aps.56.6413
    [10] 杜志伟, 周铁涛, 赵 辉, 冯林平, 董宝中, 陈昌麒. Al-Zn-Mg-Cu合金时效过程的小角度x射线散射研究.  , doi: 10.7498/aps.53.3601
    [11] 吴 光, 周春源, 曾和平. 光纤Sagnac干涉仪中单光子干涉及路由控制.  , doi: 10.7498/aps.53.698
    [12] 柴路, 何铁英, 杨胜杰, 王清月, 张志刚. 光谱位相干涉仪参数的优化选取.  , doi: 10.7498/aps.53.114
    [13] 张国英, 刘贵立, 曾梅光, 钱存富. 钢中小角度晶界区的电子结构及掺杂效应.  , doi: 10.7498/aps.49.1344
    [14] 徐信业, 王育竹. 多普勒型原子干涉仪的理论探讨.  , doi: 10.7498/aps.46.1062
    [15] 魏铭鉴. 用双晶衍射仪作小角散射测量.  , doi: 10.7498/aps.39.225
    [16] 长度室. 激光小角度测量仪.  , doi: 10.7498/aps.25.546
    [17] 权夕祖. 扫描球面-平面干涉仪.  , doi: 10.7498/aps.24.375
    [18] 母国光, 战元龄. 关于测量单色仪的光谱狭缝宽度的干涉方法.  , doi: 10.7498/aps.20.457
    [19] 胡建芳, 韦钦, 张志三. 锗红外干涉仪.  , doi: 10.7498/aps.20.1164
    [20] 物理教研组摄谱仪小组. 小型自准直攝谱仪.  , doi: 10.7498/aps.16.245
计量
  • 文章访问数:  181
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-24

/

返回文章
返回
Baidu
map