搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

希格斯物理研究:昨天、今天、明天

周辰 朱永峰 郭倩颖 张轩豪 张铭滔 耿新月 何杰汉 潘程扬 王一品 杨楚雪 陈嘉华

引用本文:
Citation:

希格斯物理研究:昨天、今天、明天

周辰, 朱永峰, 郭倩颖, 张轩豪, 张铭滔, 耿新月, 何杰汉, 潘程扬, 王一品, 杨楚雪, 陈嘉华

Higgs Physics Research: Yesterday, Today, and Tomorrow

Zhou Chen, Zhu Yongfeng, Guo Qianying, Zhang Xuanhao, Zhang Mingtao, Geng Xinyue, He Jiehan, Pan Chengyang, Wang Yipin, Yang Chuxue, Chen Jiahua
PDF
导出引用
  • 希格斯物理是高能物理最重要的研究方向之一。大型强子对撞机(LHC)上的ATLAS和CMS实验在2012年发现了希格斯玻色子,完成了标准模型的基本粒子谱。高能物理学家研究了希格斯玻色子的各种性质,来检验赋予基本粒子质量的希格斯机制,并探寻是否存在新的希格斯机制。本文将回顾希格斯玻色子的发现历程,介绍其物理性质的研究现状,并讨论未来希格斯工厂的物理前景。
    This article reviews the discovery of the Higgs boson, discusses the studies of its properties, and introduces the physical prospects of the future Higgs factories.
    The greatest goal of particle physics is to understand the fundamental particles of the universe and how they interact (or more generally, how the universe works). In the Standard Model of particle phyiscs, the Higgs mechanism generates elementary particle masses and predicts the existence of the Higgs boson. Higgs physics is one of the most important research areas in particle physics.
    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) accelerates beams of protons to collide them at a center-of-mass energy of 13 TeV, defining the world’s energy frontier. The ATLAS and CMS detectors are two general-purpose detectors at the LHC, studying the debris from the collisions.
    The Higgs boson was discovered by the ATLAS and CMS experiments in 2012. This discovery completed the fundamental particle spectrum of the Standard Model and was a major milestone for particle physics. Since then, many studies of the Higgs boson properties (including spin, mass and couplings) have been performed to refine our understanding of the Higgs mechanism. In particular, the Higgs boson’s couplings to fermions and to itself are new kinds of fundamental interactions with paramount significance, and have not been fully established. Additionally, the Higgs boson has become an important tool to search for Dark Matter, heavy resonance, and other new physics phenomena. So far, there has been no deviation from the the Standard Model predictions.
    Looking towards the future, electron-positron colliders have been proposed to study the Higgs boson more deeply. Physics studies have shown that these Higgs factories can largely improve precision on many properties of the Higgs boson (including width and couplings) and provide great physics prospects.
  • [1]

    Higgs P W 1964 Phys. Lett. 12 132

    [2]

    Higgs P W 1964 Phys. Rev. Lett. 13 508

    [3]

    Englert F, Brout R 1964 Phys. Rev. Lett. 13 321

    [4]

    Guralnik G S, Hagen C R, Kibble T W B 1964 Phys. Rev. Le

    [5]

    Alam M, et al. 1989 Physical Review D 40 712

    [6]

    Egli S, et al. 1989 Phys. Lett. B 222 533

    [7]

    Barate R, et al. 2003 Phys. Lett. B 565 61

    [8]

    Aaltonen T, et al. 2012 Phys. Rev. Lett. 109 071804

    [9]

    Aad G, et al. 2012 Phys. Lett. B 716 1

    [10]

    Chatrchyan S, et al. 2012 Phys. Lett. B 716 30

    [11]

    Aad G, et al. 2022 Nature 607 52

    [12]

    Tumasyan A, et al. 2022 Nature 607 60

    [13]

    Sirunyan A M, et al. 2020 Phys. Lett. B 805 135425

    [14]

    Tumasyan A, et al. 2022 Nature Phys. 18 1329

    [15]

    Aad G, et al. 2023 Phys. Rev. Lett. 131 251802

    [16]

    Aad G, et al. 2023 Phys. Lett. B 846 138223

    [17]

    Khachatryan V, et al. 2015 Phys. Rev. D 92 012004

    [18]

    Aad G, et al. 2015 Eur. Phys. J. C 75 476

    [19]

    Aaboud M, et al. 2018 Phys. Lett. B 784 173

    [20]

    Sirunyan A M, et al. 2018 Phys. Rev. Lett. 120 231801

    [21]

    Sirunyan A M, et al. 2021 JHEP 01 148

    [22]

    Aad G, et al. 2021 Phys. Lett. B 812 135980

    [23]

    Degrassi G, Di Vita S, Elias-Miro J, Espinosa J R, Giudice G F, Isidori G, Strumia A 08 098

    [24]

    Sirunyan A M, et al. 2018 Phys. Lett. B 779 283

    [25]

    Aaboud M, et al. 2019 Phys. Rev. D 99 072001

    [26]

    Aaboud M, et al. 2018 Phys. Lett. B 786 59

    [27]

    Sirunyan A M, et al. 2018 Phys. Rev. Lett. 121 121801

    [28]

    Sirunyan A M, et al. 2023 Phys. Rev. Lett. 131 061801

    [29]

    Aad G, et al. 2022 Eur. Phys. J. C 82 717

    [30]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88 035009

    [31]

    Aad G, et al. 2024 Phys. Rev. Lett. 133 101801

    [32]

    Aad G, et al. 2020 Phys. Rev. D 101 012002

    [33]

    Aad G, et al. 2024 Phys. Rev. Lett. 132 021803

    [34]

    Cao Q H, Xu L X, Yan B, Zhu S h 2019 Physics Letters B 789 233

    [35]

    Andersen J R, et al. 2013 arXiv preprint arXiv:1307.1347

    [36]

    Aad G, et al. 2024

    [37]

    2020

    [38]

    Sirunyan A M, et al. 2017 JHEP 11 047

    [39]

    de Florian D, et al. 2017

    [40]

    Tumasyan A, et al. 2023 Phys. Rev. D 108 032013

    [41]

    Sirunyan A M, et al. 2020 Phys. Rev. Lett. 125 061801

    [42]

    Tumasyan A, et al. 2022 JHEP 06 012

    [43]

    Aad G, et al. 2023 Eur. Phys. J. C 83 563

    [44]

    Aad G, et al. 2020 Phys. Rev. Lett. 125 061802

    [45]

    Arbey A, Mahmoudi F 2021 Progress in Particle and Nuclear Physics 119 103865

    [46]

    Ward E 2019 LHC detector transverse cross-section. cds.cern.ch/record/2665178

    [47]

    Carpenter L, DiFranzo A, Mulhearn M, Shimmin C, Tulin S, Whiteson D 2014 Phys. Rev. D 075017

    [48]

    Aaboud M, et al. 2019 JHEP 05 142

    [49]

    Hayrapetyan A, et al. 2024

    [50]

    Lee T D 1973 Phys. Rev. D 8 1226

    [51]

    Branco G, Ferreira P, Lavoura L, Rebelo M, Sher M, Silva J P 2012 Theory and phenomenology two-Higgs-doublet models 516 1

    [52]

    Haber H E, Stål O 2015 Eur. Phys. J. C 75 491

    [53]

    Kling F, No J M, Su S 2016 J. High Energy Phys. 2016 93

    [54]

    Chalons G, Domingo F 2012 Phys. Rev. D 86 115024

    [55]

    Chen C Y, Freid M, Sher M 2014 Phys. Rev. D 89 075009

    [56]

    Muhlleitner M, Sampaio M O P, Santos R, Wittbrodt J 2017 JHEP 03 094

    [57]

    Robens T, Stefaniak T, Wittbrodt J 2020 Eur. Phys. J. C 80 151

    [58]

    Gunion J F, Haber H E 1986 Nucl. Phys. B 272 1

    [59]

    Gunion J F, Haber H E 1986 Nucl. Phys. B 278 449

    [60]

    Degrassi G, Heinemeyer S, Hollik W, Slavich P, Weiglein G 2003 Eur. Phys. J. C 28 133

    [61]

    Djouadi A 2008 Phys. Rep. 459 1

    [62]

    Giudice G F, Rattazzi R, Wells J D 2001 Nucl. Phys. B 595 250

    [63]

    Pappadopulo D, Thamm A, Torre R, Wulzer A 2014 J. High Energy Phys. 2014 60

    [64]

    Tumasyan A, et al. 2023 JHEP 07 073

    [65]

    Sirunyan A M, et al. 2020 JHEP 04 171. [Erratum: JHEP 03, 187 (2022)]

    [66]

    Sirunyan A M, et al. 2020 JHEP 03 034

    [67]

    Sirunyan A M, et al. 2020 JHEP 03 065

    [68]

    Sirunyan A M, et al. 2019 Eur. Phys. J. C 79 421

    [69]

    Zhu Y, Cui H, Ruan M 2022 J. High Energy Phys. 11 100

    [70]

    An F, et al. 2019 Chin. Phys. C 43 043002

    [71]

    Aryshev A, et al. 2022

    [72]

    Linssen L, Miyamoto A, Stanitzki M, Weerts H 2012

    [73]

    Dong M, et al. 2018

    [74]

    Agapov I, et al. 2022

    [75]

    Cheng H, et al. 2022 In Snowmass 2021

    [76]

    Liang H, Zhu Y, Wang Y, Che Y, Zhou C, Qu H, Ruan M 2024 Phys. Rev. Lett. 132 221802

    [77]

    Qu H, Gouskos L 2020 Phys. Rev. D 101 056019

    [78]

    Suehara T, Tanabe T 2016 Nucl. Instrum. Meth. A 808 109

    [79]

    Cui H, Zhao M, Wang Y, Liang H, Ruan M 2024 J. High Energy Phys. 05 210. [Erratum: JHEP 07,005 (2024), Erratum: JHEP 08, 119 (2024)]

    [80]

    Cepeda M, et al. 2019 CERN Yellow Rep. Monogr. 7 221

  • [1] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相.  , doi: 10.7498/aps.73.20231566
    [2] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象.  , doi: 10.7498/aps.73.20240917
    [3] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模.  , doi: 10.7498/aps.66.220201
    [4] 周杰, 姚颖莉, 邵根富, 沈晓燕, 刘鹏. 基于车载通信标准街道场景的电磁散射信道模型.  , doi: 10.7498/aps.65.140501
    [5] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子.  , doi: 10.7498/aps.64.180201
    [6] 韩金钟, 秦臻, 王学雷. ILC上Z玻色子与荷电top-pion对联合产生过程的研究.  , doi: 10.7498/aps.61.041201
    [7] 全亚民, 刘大勇, 邹良剑. 多轨道Hubbard模型的隶玻色子数值算法研究.  , doi: 10.7498/aps.61.017106
    [8] 陈学文, 方祯云, 张家伟, 钟涛, 涂卫星. 标准模型中两类中性玻色子混合圈链图传播子的重整化及其e+e-→μ+μ-反应截面.  , doi: 10.7498/aps.60.021101
    [9] 张峰, 张春旭, 黄明球. 具有整体代对称性的左右对称模型中的中微子质量.  , doi: 10.7498/aps.59.3130
    [10] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变.  , doi: 10.7498/aps.58.3799
    [11] 李 博, 王延申. 可积开边界条件下的q形变玻色子模型.  , doi: 10.7498/aps.56.1260
    [12] 孙久勋, 章立源. s+d混合波对称性下联合模型的超导电性.  , doi: 10.7498/aps.45.1913
    [13] 余扬政, 陈熊熊. 二维超对称模型的超对称破缺和Witten指数.  , doi: 10.7498/aps.42.214
    [14] 刘辽, 李鉴曾. 迹反常与时间对称性反弹宇宙模型.  , doi: 10.7498/aps.31.96
    [15] 侯伯宇. 各级微扰展开下自发破缺的规范无关性、么正性及可重整性.  , doi: 10.7498/aps.26.317
    [16] 赵保恒. 自发破缺规范理论中的光子-光子散射.  , doi: 10.7498/aps.25.53
    [17] 杨国琛, 罗辽复, 陆埮. 中间玻色子理论Ⅰ.基本假设和对称性.  , doi: 10.7498/aps.22.1027
    [18] 高崇寿. 关于弱相互作用的中间玻色子理论和CP不守恒问题.  , doi: 10.7498/aps.20.184
    [19] 陈启洲. 关于弱相互作用的中间玻色子问题.  , doi: 10.7498/aps.20.1292
    [20] 杨国桢, 关洪. 关于弱作用的中间玻色子理论.  , doi: 10.7498/aps.20.928
计量
  • 文章访问数:  72
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-13

/

返回文章
返回
Baidu
map