搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性

杨艳丽 段志磊 薛海斌

引用本文:
Citation:

非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性

杨艳丽, 段志磊, 薛海斌

Edge states and skin effect dependent electron transport properties of non-Hermitian Su-Schrieffer-Heeger chain

Yang Yan-Li, Duan Zhi-Lei, Xue Hai-Bin
PDF
HTML
导出引用
  • 在非互易Su-Schrieffer-Heeger (SSH)链中, 电子在胞内的跳跃振幅依赖于其跳跃方向, 因而, 该非厄米SSH链同时存在非平庸拓扑边缘态和非厄米趋肤效应. 相应地, 如何探测非厄米SSH链的边缘态和趋肤效应成为非厄米物理学的一个重要课题. 本文研究了非厄米SSH链的非平庸拓扑边缘态和非厄米趋肤效应对其零能附近电子输运特性的依赖关系. 研究发现当电子在零能附近透射率峰的峰值远小于1时, 非厄米SSH链具有左趋肤效应; 反之, 零能附近电子透射率峰的峰值远大于1时, 非厄米SSH链则具有右趋肤效应. 特别是, 在非平庸拓扑边缘态区域内, 非厄米SSH链的趋肤效应被进一步增强. 另外, 当非厄米SSH链与左、右导线之间的电子隧穿耦合强度由弱到强改变时, 零能附近电子反射率谷的数目将从2个变为0, 此特性可以用来探测非厄米SSH链具有非平庸拓扑边缘态. 上述结果在理论上为探测非厄米SSH链的非平庸拓扑边缘态和非厄米趋肤效应类型提供了一种可选择的方案.
    In the non-reciprocal Su-Schrieffer-Heeger (SSH) chain, the hopping amplitude of an electron in the intra-cell depends on its hopping direction. Consequently, the non-Hermitian SSH chain has both non-trivial topological edge state and non-Hermitian skin effect. However, how to detect the non-trivial topological edge states and non-Hermitian skin effect has become an important topic in non-Hermitian physics. In this paper, we study the relationships of the non-trivial topological edge states and the non-Hermitian skin effect of non-Hermitian SSH chain with their electron transport properties in the vicinity of the zero energy. It is demonstrated that when the peak value of the electron transmission probability in the vicinity of the zero energy is much smaller than 1, the non-Hermitian SSH chain has a left-non-Hermitian skin effect; while that in the vicinity of the zero energy is much larger than 1, the non-Hermitian SSH chain has a right-non-Hermitian skin effect. In particular, the skin effect of non-Hermitian SSH chain can be further enhanced in the region of non-trivial topological edge states. Moreover, with the increase of the electron tunneling coupling amplitudes between the non-Hermitian SSH chain and the left and right leads from the weak coupling regime to the strong coupling one, the number of the dips of reflection probability in the vicinity of the zero energy will change from two to zero. Therefore, these results theoretically provide an alternative scheme for detecting non-trivial topological edge states and non-Hermitian skin effect types of the non-Hermitian SSH chain.
      通信作者: 薛海斌, xuehaibin@tyut.edu.cn
    • 基金项目: 山西省应用基础研究计划(批准号: 20210302123184, 201601D011015)、山西省高等学校优秀青年学术带头人支持计划(批准号: 163220120-S)和山西省高等学校教学改革创新项目(批准号: J20221492)资助的课题.
      Corresponding author: Xue Hai-Bin, xuehaibin@tyut.edu.cn
    • Funds: Project supported by the Applied Basic Research Program of Shanxi Province, China (Grant Nos. 20210302123184, 201601D011015) , the Outstanding Innovative Academic Leader of Higher Learning Institutions of Shanxi Province, China (Grant No. 163220120-S), and the Teaching Reform and Innovation Project of Colleges and Universities in Shanxi Province, China (Grant No. J20221492).
    [1]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249Google Scholar

    [2]

    Bergholtz E J, Budich J C, K Flore K 2021 Rev. Mod. Phys. 93 015005Google Scholar

    [3]

    Zhang X, Zhang T, Lu M H, Chen Y F 2022 Adv. Phys. -X 7 2109431Google Scholar

    [4]

    Li A, Wei H, Cotrufo M, Chen W, Mann S, Ni X, Xu B, Chen J, Wang J, Fan S, Qiu CW, Alù A, Chen L 2023 Nat. Nanotechnol. 18 706Google Scholar

    [5]

    Banerjee A, Sarkar R, Dey S, Narayan A 2023 J. Phys. Condens. Matter 35 333001Google Scholar

    [6]

    Heiss W D 2012 J. Phys. A: Math. Theor. 45 444016Google Scholar

    [7]

    Mandal I, Bergholtz E J, 2021 Phys. Rev. Lett. 127 186601Google Scholar

    [8]

    Wang Q, Chong Y D 2023 J. Opt. Soc. Am. B 40 1443Google Scholar

    [9]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, ThomaleR 2020 Nat. Phys. 16 747Google Scholar

    [10]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [11]

    Ghataka A, Brandenbourgera M, van Wezela J, Coulaisa C 2020 Proc. Natl. Acad. Sci. U. S. A. 117 29561Google Scholar

    [12]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [13]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103(RGoogle Scholar

    [14]

    Wang X R, Guo C X, Kou S P 2020 Phys. Rev. B 101 121116(RGoogle Scholar

    [15]

    Wang X R, Guo C X, Du Q, Kou S P 2020 Chin. Phys. Lett. 37 117303Google Scholar

    [16]

    Jezequel L, Delplace P 2023 Phys. Rev. Lett. 130 066601Google Scholar

    [17]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, SzameitA 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [18]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [19]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [20]

    Liu S, Shao R, Ma S, Zhang L, You O, Wu H, Xiang Y J, Cui T J, Zhang S 2021 Research 2021 5608038Google Scholar

    [21]

    Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W, Yan B 2022 Phys. Rev. Lett. 129 070401Google Scholar

    [22]

    Zhou Q, Wu J, Pu Z, Lu J, Huang X, Deng W, Ke M, Liu Z, 2023 Nat. Commun. 14 4569Google Scholar

    [23]

    Feng Y, Liu Z, Liu F, Yu J, Liang S, Li F, Zhang Y, Xiao M, Zhang Z 2023 Phys. Rev. Lett. 131 013802Google Scholar

    [24]

    Zhang H, Chen T, Li L, Lee C H, Zhang X 2023 Phys. Rev. B 107 085426Google Scholar

    [25]

    Lee C H, Thomale R 2019 Phys. Rev. B 99 201103(RGoogle Scholar

    [26]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [27]

    Lin Z, Lin Y, Yi W 2022 Phys. Rev. B 106 063112Google Scholar

    [28]

    Zeng Q B 2022 Phys. Rev. B 106 235411Google Scholar

    [29]

    Li J R, Luo C, Zhang L L, Zhang S F, Zhu P P, Gong W J 2023 Phys. Rev. A 107 022222Google Scholar

    [30]

    Tang C, Yang H, Song L, Yao X, Yan P, Cao Y 2023 Phys. Rev. B 108 035410Google Scholar

    [31]

    Kokhanchik P, Solnyshkov D, MalpuechG 2023 Phys. Rev. B 108 L041403Google Scholar

    [32]

    Su W P, SchriefferJ R, HeegerA J 1980 Phys. Rev. B 22 2099Google Scholar

    [33]

    Li H, Yi W 2022 Phys. Rev. A 106 053311Google Scholar

    [34]

    张蓝云, 薛海斌, 陈彬, 陈建宾, 邢丽丽 2020 69 077301Google Scholar

    Zhang L Y, Xue H B, Chen B, Chen J B, Xing L L 2020 Acta Phys. Sin. 69 077301Google Scholar

    [35]

    薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽 2021 70 087301Google Scholar

    Xue H B, Duan Z L, Chen B, Chen J B, Xing L L 2021 Acta Phys. Sin. 70 087301Google Scholar

    [36]

    Ye C Z, Zhang L Y, Xue H B 2022 Chin. Phys. B 31 027304Google Scholar

    [37]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

  • 图 1  非厄米SSH链与左、右导线耦合系统的示意图, 其中, 小的实心圆(红色)表示A子格, 大的实心圆(绿色)表示B子格, 空心圆(黑色)表示导线上的原子

    Fig. 1.  Schematic diagram of the non-Hermitian SSH chain coupled to the left and right leads. The small solid circles (red) represent the A sublattices, the large solid circles (green) represent the B sublattices, the hollow circles (black) represent atoms on the leads.

    图 2  (a1), (a2)非厄米SSH链的能谱图实部; (b1), (b2)非厄米SSH链的能谱图虚部; (c1), (c2)非厄米SSH链的不同缠绕数随着$ \upsilon $的变化图. 其中, (a1), (b1), (c1) $ \gamma = 0.4 $; (a2), (b2)和(c2) $ \gamma = 1.4 $. 非厄米SSH链的其他参数选取为$ w = 1.0 $, $ N = 20 $

    Fig. 2.  (a1), (a2) Real part of the energy spectrum of the non-Hermitian SSH chain; (b1), (b2) imaginary part of the energy spectrum of the non-Hermitian SSH chain; (c1), (c2) the different winding number of the non-Hermitian SSH chain as a function of the value of $\upsilon $. Here, (a1), (b1), (c1) $ \gamma = 0.4 $; (a2), (b2), (c2) $ \gamma = 1.4 $. The other parameters of the non-Hermitian SSH chain are chosen as $ w = 1.0 $ and $ N = 20 $.

    图 3  非厄米SSH链在零能附近的本征值的本征态波函数概率幅的绝对值随子格$n$和$ \upsilon $值变化的相图 (a) $\gamma = $$ 0.4$; (b) $\gamma = 1.4$; 非厄米SSH链的其他参数选取为$ w = $$ 1.0 $, $ N = 20 $

    Fig. 3.  Absolute value of probability amplitudes of the wave functions of the nearly zero-energy eigenstates of the non-Hermitian SSH chain as a function of the sublattice $n$and the value of $ \upsilon $: (a) $\gamma = 0.4$; (b) $\gamma = 1.4$. The other parameters of the non-Hermitian SSH chain are chosen as $ w = 1.0 $and $ N = 20 $.

    图 4  非厄米SSH链的本征态波函数在每个子格上的概率分布图 (a1) $ \upsilon = 0.01 $; (a2) $ \upsilon = - 0.01 $; (b1) $ \upsilon = 0.2 $; (b2) $ \upsilon = - 0.2 $; (c1) $ \upsilon = 0.4 $; (c2) $ \upsilon = - 0.4 $; (d1) $ \upsilon = 0.7 $; (d2) $ \upsilon = - 0.7 $; (e1) $ \upsilon = 1.5 $; (e2) $ \upsilon = - 1.5 $; 非厄米SSH链的其他参数选取为$\gamma = $$ 0.4$, $ w = 1.0 $, $ N = 20 $

    Fig. 4.  Distribution of probabilities of the wave functions of the non-Hermitian SSH chain: (a1) $ \upsilon = 0.01 $; (a2) $ \upsilon = - 0.01 $; (b1) $ \upsilon = 0.2 $; (b2) $ \upsilon = - 0.2 $; (c1) $ \upsilon = 0.4 $; (c2) $ \upsilon = - 0.4 $; (d1) $ \upsilon = 0.7 $; (d2) $ \upsilon = - 0.7 $; (e1) $ \upsilon = 1.5 $; (e2) $ \upsilon = - 1.5 $. The other parameters of the non-Hermitian SSH chain are chosen as $\gamma = 0.4$, $ w = 1.0 $ and $ N = 20 $.

    图 5  非厄米SSH链的本征态波函数在每个子格上的概率分布图 (a1) $ \upsilon = 0.5 $; (a2) $ \upsilon = - 0.5 $; (b1) $ \upsilon = 1.3 $; (b2) $ \upsilon = - 1.3 $; (c1) $ \upsilon = 1.4 $; (c2) $ \upsilon = - 1.4 $; (d1) $ \upsilon = 1.5 $; (d2) $ \upsilon = - 1.5 $; (e1) $ \upsilon = 2.0 $; (e2) $ \upsilon = - 2.0 $; 非厄米SSH链的其他参数选取为$\gamma = $$ 1.4$, $ w = 1.0 $, $ N = 20 $

    Fig. 5.  Distribution of probabilities of the wave functions of the non-Hermitian SSH chain: (a1) $ \upsilon = 0.5 $; (a2) $ \upsilon = - 0.5 $; (b1) $ \upsilon = 1.3 $; (b2) $ \upsilon = - 1.3 $; (c1) $ \upsilon = 1.4 $; (c2) $ \upsilon = - 1.4 $; (d1) $ \upsilon = 1.5 $; (d2) $ \upsilon = - 1.5 $; (e1) $ \upsilon = 2.0 $; (e2) $ \upsilon = - 2.0 $. The other parameters of the non-Hermitian SSH chain are chosen as $\gamma = 1.4$, $ w = 1.0 $ and $ N = 20 $.

    图 6  非厄米SSH链的电子透射率和反射率随不同隧穿耦合振幅和入射电子能量变化的相图 (a1), (b1) $ \upsilon = 0.5 $; (a2), (b2) $ \upsilon = $$ - 0.5 $; 非厄米SSH链的其他参数选取为$\gamma = 0.4$, $ w = 1.0 $, $ N = 20 $

    Fig. 6.  Transmission probabilities and reflection probabilities of the non-Hermitian SSH chain as a function of the amplitude of tunneling coupling and the energy of incident electron: (a1), (b1) $ \upsilon = 0.5 $; (a2), (b2) $ \upsilon = - 0.5 $. The other parameters of the non-Hermitian SSH chain are chosen as $\gamma = 0.4$, $ w = 1.0 $ and $ N = 20 $.

    图 7  非厄米SSH链的电子透射率和反射率随不同隧穿耦合振幅和入射电子能量变化的相图 (a1), (b1) $ \upsilon = 1.3 $; (a2), (b2) $ \upsilon = $$ - 1.3 $; 非厄米SSH链的其他参数选取为$\gamma = 1.4$, $ w = 1.0 $, $ N = 20 $

    Fig. 7.  Transmission probabilities and reflection probabilities of the non-Hermitian SSH chain as a function of the amplitude of tunneling coupling and the energy of incident electron: (a1), (b1) $ \upsilon = 1.3 $; (a2), (b2) $ \upsilon = - 1.3 $. The other parameters of the non-Hermitian SSH chain are chosen as $\gamma = 1.4$, $ w = 1.0 $ and $ N = 20 $.

    图 8  (a1), (b1)非厄米SSH链在零能级附近的能谱图; (a2), (b2)非厄米SSH链与左导线原子$ j = - 1 $和右导线原子$ j = 1 $耦合的修正系统在零能级附近的能谱图. 其中, (a1) $\gamma = 0.4$, (a2) $\gamma = 0.4$, $ {t_{\text{L}}} = {t_{\text{R}}} = 0.00002 $; (b1) $\gamma = 1.4$, (b2) $\gamma = 1.4$, $ {t_{\text{L}}} = $$ {t_{\text{R}}} = 0.004 $. 非厄米SSH链的其他参数选取为$ w = 1.0 $, $ N = 20 $.

    Fig. 8.  (a1), (b1) Real part of the energy spectrum of the non-Hermitian SSH chain in thevicinity of the zero energy; (a2), (b2) real part of the energy spectrum of the non-Hermitian SSH chain coupled to the first sublattice of the left lead $ j = - 1 $ and that of the right lead $ j = 1 $ in the vicinity of the zero energy. Here, (a1) $\gamma = 0.4$, (a2) $\gamma = 0.4$, $ {t_{\text{L}}} = {t_{\text{R}}} = 0.00002 $; (b1) $\gamma = 1.4$, (b2) $\gamma = $$ 1.4$, $ {t_{\text{L}}} = {t_{\text{R}}} = 0.004 $. The other parameters of the non-Hermitian SSH chain are chosen as $ w = 1.0 $ and $ N = 20 $.

    Baidu
  • [1]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249Google Scholar

    [2]

    Bergholtz E J, Budich J C, K Flore K 2021 Rev. Mod. Phys. 93 015005Google Scholar

    [3]

    Zhang X, Zhang T, Lu M H, Chen Y F 2022 Adv. Phys. -X 7 2109431Google Scholar

    [4]

    Li A, Wei H, Cotrufo M, Chen W, Mann S, Ni X, Xu B, Chen J, Wang J, Fan S, Qiu CW, Alù A, Chen L 2023 Nat. Nanotechnol. 18 706Google Scholar

    [5]

    Banerjee A, Sarkar R, Dey S, Narayan A 2023 J. Phys. Condens. Matter 35 333001Google Scholar

    [6]

    Heiss W D 2012 J. Phys. A: Math. Theor. 45 444016Google Scholar

    [7]

    Mandal I, Bergholtz E J, 2021 Phys. Rev. Lett. 127 186601Google Scholar

    [8]

    Wang Q, Chong Y D 2023 J. Opt. Soc. Am. B 40 1443Google Scholar

    [9]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, ThomaleR 2020 Nat. Phys. 16 747Google Scholar

    [10]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [11]

    Ghataka A, Brandenbourgera M, van Wezela J, Coulaisa C 2020 Proc. Natl. Acad. Sci. U. S. A. 117 29561Google Scholar

    [12]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [13]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103(RGoogle Scholar

    [14]

    Wang X R, Guo C X, Kou S P 2020 Phys. Rev. B 101 121116(RGoogle Scholar

    [15]

    Wang X R, Guo C X, Du Q, Kou S P 2020 Chin. Phys. Lett. 37 117303Google Scholar

    [16]

    Jezequel L, Delplace P 2023 Phys. Rev. Lett. 130 066601Google Scholar

    [17]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, SzameitA 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [18]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [19]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [20]

    Liu S, Shao R, Ma S, Zhang L, You O, Wu H, Xiang Y J, Cui T J, Zhang S 2021 Research 2021 5608038Google Scholar

    [21]

    Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W, Yan B 2022 Phys. Rev. Lett. 129 070401Google Scholar

    [22]

    Zhou Q, Wu J, Pu Z, Lu J, Huang X, Deng W, Ke M, Liu Z, 2023 Nat. Commun. 14 4569Google Scholar

    [23]

    Feng Y, Liu Z, Liu F, Yu J, Liang S, Li F, Zhang Y, Xiao M, Zhang Z 2023 Phys. Rev. Lett. 131 013802Google Scholar

    [24]

    Zhang H, Chen T, Li L, Lee C H, Zhang X 2023 Phys. Rev. B 107 085426Google Scholar

    [25]

    Lee C H, Thomale R 2019 Phys. Rev. B 99 201103(RGoogle Scholar

    [26]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [27]

    Lin Z, Lin Y, Yi W 2022 Phys. Rev. B 106 063112Google Scholar

    [28]

    Zeng Q B 2022 Phys. Rev. B 106 235411Google Scholar

    [29]

    Li J R, Luo C, Zhang L L, Zhang S F, Zhu P P, Gong W J 2023 Phys. Rev. A 107 022222Google Scholar

    [30]

    Tang C, Yang H, Song L, Yao X, Yan P, Cao Y 2023 Phys. Rev. B 108 035410Google Scholar

    [31]

    Kokhanchik P, Solnyshkov D, MalpuechG 2023 Phys. Rev. B 108 L041403Google Scholar

    [32]

    Su W P, SchriefferJ R, HeegerA J 1980 Phys. Rev. B 22 2099Google Scholar

    [33]

    Li H, Yi W 2022 Phys. Rev. A 106 053311Google Scholar

    [34]

    张蓝云, 薛海斌, 陈彬, 陈建宾, 邢丽丽 2020 69 077301Google Scholar

    Zhang L Y, Xue H B, Chen B, Chen J B, Xing L L 2020 Acta Phys. Sin. 69 077301Google Scholar

    [35]

    薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽 2021 70 087301Google Scholar

    Xue H B, Duan Z L, Chen B, Chen J B, Xing L L 2021 Acta Phys. Sin. 70 087301Google Scholar

    [36]

    Ye C Z, Zhang L Y, Xue H B 2022 Chin. Phys. B 31 027304Google Scholar

    [37]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

  • [1] 黄泽鑫, 圣宗强, 程乐乐, 曹三祝, 陈华俊, 吴宏伟. 一维非互易声学晶体的非厄米趋肤态操控.  , 2024, 73(21): 214301. doi: 10.7498/aps.73.20241087
    [2] 徐灿鸿, 许志聪, 周子榆, 成恩宏, 郎利君. 非厄米格点模型的经典电路模拟.  , 2023, 72(20): 200301. doi: 10.7498/aps.72.20230914
    [3] 侯博, 曾琦波. 非厄米镶嵌型二聚化晶格.  , 2022, 71(13): 130302. doi: 10.7498/aps.71.20220890
    [4] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象.  , 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [5] 邓天舒. 畴壁系统中的非厄米趋肤效应.  , 2022, 71(17): 170306. doi: 10.7498/aps.71.20221087
    [6] 刘佳琳, 庞婷方, 杨孝森, 王正岭. 无序非厄米Su-Schrieffer-Heeger中的趋肤效应.  , 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [7] 胡渝民, 宋飞, 汪忠. 广义布里渊区与非厄米能带理论.  , 2021, 70(23): 230307. doi: 10.7498/aps.70.20211908
    [8] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性.  , 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [9] 张蓝云, 薛海斌, 陈彬, 陈建宾, 邢丽丽. 量子点-Su-Schrieffer-Heeger原子链系统的电子输运特性.  , 2020, 69(7): 077301. doi: 10.7498/aps.69.20191871
    [10] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态.  , 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [11] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率.  , 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [12] 王振德, 刘念华. 正负折射率材料组成的半无限一维光子晶体的反射率.  , 2009, 58(1): 559-564. doi: 10.7498/aps.58.559
    [13] 刘世元, 顾华勇, 张传维, 沈宏伟. 基于修正等效介质理论的微纳深沟槽结构反射率快速算法研究.  , 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [14] 杜 娟, 张淳民, 赵葆常, 孙 尧. 稳态大视场偏振干涉成像光谱仪中视场补偿型Savart偏光镜透射率研究.  , 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [15] 徐 敏, 张月蘅, 沈文忠. 半导体远红外反射镜中反射率和相位研究.  , 2007, 56(4): 2415-2421. doi: 10.7498/aps.56.2415
    [16] 冯素娟, 尚 亮, 毛庆和. 利用偏振控制器连续调节光纤环镜的反射率.  , 2007, 56(8): 4677-4685. doi: 10.7498/aps.56.4677
    [17] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究.  , 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [18] 彭志红, 张淳民, 赵葆常, 李英才, 吴福全. 新型偏振干涉成像光谱仪中Savart偏光镜透射率的研究.  , 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
    [19] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定.  , 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [20] 吕志伟, 王晓慧, 林殿阳, 王 超, 赵晓彦, 汤秀章, 张海峰, 单玉生. KrF激光受激布里渊散射反射率稳定性的研究.  , 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
计量
  • 文章访问数:  2810
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-09-13
  • 上网日期:  2023-09-18
  • 刊出日期:  2023-12-20

/

返回文章
返回
Baidu
map