搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

靶向PD-L1蛋白的计算机辅助药物筛选

林开东 林晓倩 林绪波

引用本文:
Citation:

靶向PD-L1蛋白的计算机辅助药物筛选

林开东, 林晓倩, 林绪波

Virtual screening of drugs targeting PD-L1 protein

Lin Kai-Dong, Lin Xiao-Qian, Lin Xu-Bo
PDF
HTML
导出引用
  • 针对PD-1/PD-L1免疫检查点的单克隆抗体抑制剂逐渐进入市场并在多种类型的肿瘤治疗中取得一定的积极效果. 然而, 随着应用范围的不断扩展, 抗体药物的局限性以及过多同质化研究等问题逐渐显现出来, 小分子化合物抑制剂成为了研究者们关注的新焦点. 本文旨在利用基于配体和基于结构的结合活性预测方法实现针对PD-L1靶点的小分子化合物虚拟筛选, 从而帮助加速小分子药物的开发. 通过从相关研究文献及专利收集PD-L1小分子抑制活性数据集, 根据不同分子表征方法和算法构建机器学习活性判定分类模型和活性强度预测回归模型, 两类模型从大型类药小分子库(ZINC15)中筛选获得68种高PD-L1抑制活性候选化合物. 其中10种化合物不仅具备良好的药物相似性和药代动力学, 还在分子对接中与已报道的热点化合物表现出同等水平的结合强度和相似的作用机制, 这一现象在后续分子动力学模拟和结合自由能估计中得到进一步验证. 本文提出了一个融合基于配体方法和基于结构方法的计算机辅助药物研发工作流程, 其在大型化合物数据库中有效筛选出有潜力的PD-L1小分子抑制剂, 有望助力加速肿瘤免疫治疗的应用.
    Monoclonal antibody inhibitors targeting PD-1/PD-L1 immune checkpoints are gradually entering the market and have achieved certain positive effects in the treatments of various types of tumors. However, with the expansion of application, the limitations of antibody drugs and problems such as excessive homogenization of research gradually appear, making small-molecule inhibitors the new focus of researchers. This study aims to use ligand-based and structure-based binding activity prediction methods to achieve virtual screening of small-molecule inhibitors targeting PD-L1, thereby helping to accelerate the development of small molecule drugs. A dataset of PD-L1 small-molecule inhibitory activity from relevant research literature and patents is collected and activity judgment classification models with intensity prediction regression models are constructed based on different molecular featurization methods and machine learning algorithms. The two types of models filter 68 candidate compounds with high PD-L1 inhibitory activity from a large drug-like small molecule screening pool (ZINC15). Ten of these compounds not only have good drug similarities and pharmacokinetics, but also exhibit comparable binding affinities and similar mechanisms of action with previous reported hotspot compounds in molecular docking. This phenomenon is further verified in subsequent molecular dynamics simulation and the estimation of binding free energy. In this study, a virtual screening workflow integrating ligand-based method and structure-based method is developed, and potential PD-L1 small-molecule inhibitors are effectively screened from large compound databases, which is expected to help accelerate the application and expansion of tumor immunotherapy.
      通信作者: 林绪波, linxbseu@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21903002)和北京航空航天大学沈元学院卓越研究基金(批准号: 230121202)资助的课题.
      Corresponding author: Lin Xu-Bo, linxbseu@buaa.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 21903002) and the Excellence Research Fund of Shen Yuan Honors College, Beihang University, China (Grant No. 230121202).
    [1]

    Waldman A D, Fritz J M, Lenardo M J 2020 Nat. Rev. Immunol. 20 651Google Scholar

    [2]

    Wherry E J, Kurachi M 2015 Nat. Rev. Immunol. 15 486Google Scholar

    [3]

    Zou W, Wolchok J D, Chen L 2016 Sci. Transl. Med. 8 328rv4Google Scholar

    [4]

    Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z 2019 Mol. Cancer 18 10Google Scholar

    [5]

    Topalian S L, Drake C G, Pardoll D M 2015 Cancer Cell 27 450Google Scholar

    [6]

    Postow M A, Callahan M K, Wolchok J D 2015 J. Clin. Oncol. 33 1974Google Scholar

    [7]

    Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S 2022 Front. Immunol. 13 964442Google Scholar

    [8]

    Ai L, Xu A, Xu J 2020 Adv. Exp. Med. Biol. 1248 33Google Scholar

    [9]

    Dermani F K, Samadi P, Rahmani G, Kohlan A K, Najafi R 2019 J. Cell. Physiol. 234 1313Google Scholar

    [10]

    Parry R V, Chemnitz J M, Frauwirth K A, Lanfranco A R, Braunstein I, Kobayashi S V, Linsley P S, Thompson C B, Riley J L 2005 Mol. Cell. Biol. 25 9543Google Scholar

    [11]

    Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis V A 2012 Sci. Signal. 5 ra46Google Scholar

    [12]

    Hui E, Cheung J, Zhu J, Su X, Taylor M J, Wallweber H A, Sasmal D K, Huang J, Kim J M, Mellman I, Vale R D 2017 Science 355 1428Google Scholar

    [13]

    Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N 2002 Proc. Natl. Acad. Sci. U.S.A. 99 12293Google Scholar

    [14]

    Iwai Y, Terawaki S, Honjo T 2005 Int. Immunol. 17 133Google Scholar

    [15]

    Gong J, Chehrazi-Raffle A, Reddi S, Salgia R 2018 J. Immunother. Cancer 6 8Google Scholar

    [16]

    Akinleye A, Rasool Z 2019 J. Hematol. Oncol. 12 92Google Scholar

    [17]

    Shiravand Y, Khodadadi F, Kashani S M A, Hosseini-Fard S R, Hosseini S, Sadeghirad H, Ladwa R, O'Byrne K, Kulasinghe A 2022 Curr. Oncol. 29 3044Google Scholar

    [18]

    Zhang J, Zhang Y, Qu B, Yang H, Hu S, Dong X 2021 Eur. J. Med. Chem. 218 113356Google Scholar

    [19]

    Johnson D B, Nebhan C A, Moslehi J J, Balko J M 2022 Nat. Rev. Clin. Oncol. 19 254Google Scholar

    [20]

    Mould D R, Meibohm B 2016 BioDrugs 30 275Google Scholar

    [21]

    Wu Q, Jiang L, Li S C, He Q J, Yang B, Cao J 2021 Acta Pharmacol. Sin. 42 1Google Scholar

    [22]

    Zhan M M, Hu X Q, Liu X X, Ruan B F, Xu J, Liao C 2016 Drug Discov. Today 21 1027Google Scholar

    [23]

    Liu C, Seeram N P, Ma H 2021 Cancer Cell Int. 21 239Google Scholar

    [24]

    Chupak L S, Zheng X 2015 WO Patent 2015034820 A1

    [25]

    Zak K M, Grudnik P, Guzik K, Zieba B J, Musielak B, Dömling A, Dubin G, Holak T A 2016 Oncotarget 7 30323Google Scholar

    [26]

    Koblish H K, Wu L, Wang L S, Liu P C C, Wynn R, Rios-Doria J, Spitz S, Liu H, Volgina A, Zolotarjova N, Kapilashrami K, Behshad E, Covington M, Yang Y O, Li J, Diamond S, Soloviev M, O'Hayer K, Rubin S, Kanellopoulou C, Yang G, Rupar M, DiMatteo D, Lin L, Stevens C, Zhang Y, Thekkat P, Geschwindt R, Marando C, Yeleswaram S, Jackson J, Scherle P, Huber R, Yao W, Hollis G 2022 Cancer Discov. 12 1482Google Scholar

    [27]

    Jiang J, Zou X, Liu Y, Liu X, Dong K, Yao X, Feng Z, Chen X, Sheng L, Li Y 2021 Front. Pharmacol. 12 677120Google Scholar

    [28]

    Wang Y, Liu X, Zou X, Wang S, Luo L, Liu Y, Dong K, Yao X, Li Y, Chen X, Sheng L 2021 Pharmaceutics 13 598Google Scholar

    [29]

    Sobral P S, Luz V C C, Almeida J, Videira P A, Pereira F 2023 Int. J. Mol. Sci. 24 5908Google Scholar

    [30]

    Luo L, Zhong A, Wang Q, Zheng T 2021 Mar. Drugs 20 29Google Scholar

    [31]

    Acúrcio R C, Pozzi S, Carreira B, Pojo M, Gómez-Cebrián N, Casimiro S, Fernandes A, Barateiro A, Farricha V, Brito J, Leandro A P, Salvador J A R, Graça L, Puchades-Carrasco L, Costa L, Satchi-Fainaro R, Guedes R C, Florindo H F 2022 J. Immunother. Cancer 10 e004695Google Scholar

    [32]

    Lung J, Hung M S, Lin Y C, Hung C H, Chen C C, Lee K D, Tsai Y H 2020 Molecules 25 5293Google Scholar

    [33]

    Guo Y, Liang J, Liu B, Jin Y 2021 Int. J. Mol. Sci. 22 10924Google Scholar

    [34]

    Sterling T, Irwin J J 2015 J. Chem. Inf. Model. 55 2324Google Scholar

    [35]

    Bemis G W, Murcko M A 1996 J. Med. Chem. 39 2887Google Scholar

    [36]

    Rogers D, Hahn M 2010 J. Chem. Inf. Model. 50 742Google Scholar

    [37]

    Yap C W 2011 J. Comput. Chem. 32 1466Google Scholar

    [38]

    Durant J L, Leland B A, Henry D R, Nourse J G 2002 J. Chem. Inf. Comput. Sci. 42 1273Google Scholar

    [39]

    Moriwaki H, Tian Y S, Kawashita N, Takagi T 2018 J. Cheminform. 10 4Google Scholar

    [40]

    Bickerton G R, Paolini G V, Besnard J, Muresan S, Hopkins A L 2012 Nat. Chem. 4 90Google Scholar

    [41]

    Kosugi T, Ohue M 2021 Int. J. Mol. Sci. 22 10925Google Scholar

    [42]

    Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D 2021 Nucleic Acids Res. 49 W5Google Scholar

    [43]

    Jing T, Zhang Z, Kang Z, Mo J, Yue X, Lin Z, Fu X, Liu C, Ma H, Zhang X, Hu W 2023 J. Med. Chem. 66 6811Google Scholar

    [44]

    Qin M, Meng Y, Yang H, Liu L, Zhang H, Wang S, Liu C, Wu X, Wu D, Tian Y, Hou Y, Zhao Y, Liu Y, Xu C, Wang L 2021 J. Med. Chem. 64 5519Google Scholar

    [45]

    Trott O, Olson A J 2010 J. Comput. Chem. 31 455Google Scholar

    [46]

    Laskowski R A, Swindells M B 2011 J. Chem. Inf. Model. 51 2778Google Scholar

    [47]

    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell Jr. A D 2010 J. Comput. Chem. 31 671Google Scholar

    [48]

    Yu W, He X, Vanommeslaeghe K, MacKerell Jr. A D 2012 J. Comput. Chem. 33 2451Google Scholar

    [49]

    Vanommeslaeghe K, MacKerell Jr. A D 2012 J. Chem. Inf. Model. 52 3144Google Scholar

    [50]

    Vanommeslaeghe K, Raman E P, MacKerell Jr. A D 2012 J. Chem. Inf. Model. 52 3155Google Scholar

    [51]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1 19Google Scholar

    [52]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [53]

    Nosé S 1984 Mol. Phys. 52 255Google Scholar

    [54]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [55]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [56]

    Hess B, Bekker H, Berendsen H J C, Fraaije J G E M 1997 J. Comput. Chem. 18 1463Google Scholar

    [57]

    Valdés-Tresanco M S, Valdés-Tresanco M E, Valiente P A, Moreno E 2021 J. Chem. Theory Comput. 17 6281Google Scholar

    [58]

    Chupak L S, Ding M, Martin S W, Zheng X, Hewawasam P, Connolly T P, Xu N, Yeung K S, Zhu J, Langley D R, Tenney D J, Scola P M 2015 WO Patent 2015160641 A3

    [59]

    Wang T, Cai S, Wang M, Zhang W, Zhang K, Chen D, Li Z, Jiang S 2021 J. Med. Chem. 64 7390Google Scholar

    [60]

    Lu L, Qi Z, Wang T, Zhang X, Zhang K, Wang K, Cheng Y, Xiao Y, Li Z, Jiang S 2022 ACS Med. Chem. Lett. 13 586Google Scholar

    [61]

    Dai X, Wang K, Chen H, Huang X, Feng Z 2021 Bioorg. Chem. 114 105034Google Scholar

    [62]

    Le Biannic R, Magnez R, Klupsch F, Leleu-Chavain N, Thiroux B, Tardy M, El Bouazzati H, Dezitter X, Renault N, Vergoten G, Bailly C, Quesnel B, Thuru X, Millet R 2022 Eur. J. Med. Chem. 236 114343Google Scholar

    [63]

    Russomanno P, Assoni G, Amato J, D'Amore V M, Scaglia R, Brancaccio D, Pedrini M, Polcaro G, La Pietra V, Orlando P, Falzoni M, Cerofolini L, Giuntini S, Fragai M, Pagano B, Donati G, Novellino E, Quintavalle C, Condorelli G, Sabbatino F, Seneci P, Arosio D, Pepe S, Marinelli L 2021 J. Med. Chem. 64 16020Google Scholar

    [64]

    Liu L, Yao Z, Wang S, Xie T, Wu G, Zhang H, Zhang P, Wu Y, Yuan H, Sun H 2021 J. Med. Chem. 64 8391Google Scholar

    [65]

    Cheng B, Ren Y, Cao H, Chen J 2020 Eur. J. Med. Chem. 199 112377Google Scholar

    [66]

    Lipinski C A 2004 Drug Discov. Today Technol. 1 337Google Scholar

    [67]

    Liang J, Wang B, Yang Y, Liu B, Jin Y 2023 Int. J. Mol. Sci. 24 1280Google Scholar

  • 图 1  数据集聚类 (a)分类模型阳性样本骨架的14个簇; (b)回归模型样本骨架的13个簇. 环形树状图的颜色代表不同的分子结构骨架簇, 颜色越接近, 骨架越相似, 一旁的化学结构图是每个簇中最具代表性的骨架

    Fig. 1.  Dataset clustering: (a) 14 clusters of scaffolds of active compounds in the classification models; (b) 13 clusters of scaffolds of compounds in the regression models. The colors of the circular dendrograms represent different clusters of scaffolds, and the closer the colors are, the more similar the scaffolds are. The chemical structure diagrams on the side are the most representative scaffolds of each cluster.

    图 2  分类模型性能表现 (a)灵敏度; (b)特异度; (c)准确度; (d)马修斯相关系数

    Fig. 2.  Performance of binary models for classification tasks: (a) SE; (b) SP; (c) ACC; (d) MCC.

    图 3  分子结构片段在两类样本间的计数差异 (a)活性化合物计数占优的结构片段; (b)非活性化合物计数占优的结构片段. 结构片段的中心原子以蓝色突出显示; 芳香性原子被着色为黄色, 而脂肪烃链原子则被着色为灰色

    Fig. 3.  Count difference of fragments of structures between active and inactive compounds: (a) Fragments in active compounds with a proportion higher than inactive compounds; (b) fragments in active compounds with a proportion lower than inactive compounds. The center atoms of substructure fragments are highlighted in blue; aromaticity atoms are colored in yellow and aliphatic hydrocarbon atoms are colored in gray.

    图 4  回归模型性能表现 (a)平均绝对误差; (b)均方根误差

    Fig. 4.  Performance of continuous models for regression tasks: (a) MAE; (b) RMSE.

    图 5  两种最佳性能回归模型预测结果 (a), (c)样本预测值与标签值分布; (b), (d)样本预测偏差

    Fig. 5.  Prediction results of two best-performing continuous models: (a), (c) Distribution of predicted values and label values; (b), (d) prediction residuals.

    图 6  虚拟筛选流程

    Fig. 6.  Workflow of virtual screening.

    图 7  RMSD (a) PD-L1二聚体骨架; (b)配体

    Fig. 7.  RMSD: (a) Backbone of PD-L1 dimer; (b) ligand.

    图 8  配体与PD-L1结合模式和关键残基 (a) ZINC000021723762; (b) ZINC000021874692; (c) ZINC000175468610; (d) ZINC000019770413; (e) ZINC000021874694; (f) ZINC000952973550; (g) ZINC000064987401; (h) ZINC000003908573; (i) ZINC000020538424; (j) ZINC000004063088; (k) BMS202; (l) INCB086550

    Fig. 8.  Ligand binding mode with PD-L1 and key residues: (a) ZINC000021723762; (b) ZINC000021874692; (c) ZINC000175468610; (d) ZINC000019770413; (e) ZINC000021874694; (f) ZINC000952973550; (g) ZINC000064987401; (h) ZINC000003908573; (i) ZINC000020538424; (j) ZINC000004063088; (k) BMS202; (l) NCB086550.

    表 1  最低对接评分的10种候选化合物及BMS202和INCB086550的对接结果

    Table 1.  Docking results for the top 10 hits with BMS202 and INCB086550.

    序号 化合物 化学结构式 对接分数/(kcal·mol–1)
    Hit 1 ZINC000021723762 –11.8
    Hit 2 ZINC000021874692 –10.7
    Hit 3 ZINC000175468610 –10.7
    Hit 4 ZINC000019770413 –10.6
    Hit 5 ZINC000021874694 –10.6
    Hit 6 ZINC000952973550 –10.5
    Hit 7 ZINC000064987401 –10.5
    Hit 8 ZINC000003908573 –10.4
    Hit 9 ZINC000020538424 –10.4
    Hit 10 ZINC000004063088 –10.3
    Ctr 1 BMS202 –11.1
    Ctr 2 INCB086550 –10.0
    下载: 导出CSV

    表 2  结合自由能计算结果

    Table 2.  Results of MMPBSA.

    化合物 $ {E}_{{\mathrm{v}}{\mathrm{d}}{\mathrm{w}}} $/(kcal·mol–1) $ {E}_{{\mathrm{e}}{\mathrm{l}}{\mathrm{e}}} $/(kcal·mol–1) $ {E}_{{\mathrm{P}}{\mathrm{B}}} $/(kcal·mol–1) $ {E}_{{\mathrm{S}}{\mathrm{A}}} $/(kcal·mol–1) $ \Delta G $/(kcal·mol–1)
    ZINC000021723762 –58.86$ \pm 0.12 $ –8.76$ \pm $0.10 35.53$ \pm $0.09 –4.03$ \pm $0.00 –36.12$ \pm $0.12
    ZINC000021874692 –50.42$ \pm $0.11 –6.50$ \pm $0.14 35.65$ \pm $0.16 –4.50$ \pm $0.01 –25.78$ \pm 0.12 $
    ZINC000175468610 –42.46$ \pm 0.09 $ –14.34$ \pm 0.08 $ 36.20$ \pm 0.13 $ –4.02$ \pm $0.00 –24.61$ \pm 0.10 $
    ZINC000019770413 –47.31$ \pm 0.08 $ –3.45$ \pm 0.08 $ 26.32$ \pm 0.07 $ –3.48$ \pm $0.00 –27.91$ \pm 0.08 $
    ZINC000021874694 –55.17$ \pm 0.09 $ –17.87$ \pm 0.13 $ 45.67$ \pm 0.14 $ –4.59$ \pm $0.00 –31.97$ \pm 0.12 $
    ZINC000952973550 –55.82$ \pm 0.08 $ –13.47$ \pm 0.11 $ 45.83$ \pm 0.11 $ –4.19$ \pm $0.00 –27.65$ \pm 0.11 $
    ZINC000064987401 –48.50$ \pm 0.08 $ –14.71$ \pm 0.12 $ 38.59$ \pm 0.11 $ –4.06$ \pm $0.00 –28.68$ \pm 0.12 $
    ZINC000003908573 –44.75$ \pm 0.07 $ 4.59$ \pm 0.11 $ 20.20$ \pm 0.13 $ –3.74$ \pm $0.00 –23.70$ \pm 0.12 $
    ZINC000020538424 –49.50$ \pm 0.09 $ –8.50$ \pm 0.13 $ 32.61$ \pm 0.16 $ –4.17$ \pm $0.01 –29.57$ \pm 0.10 $
    ZINC000004063088 –64.14$ \pm 0.09 $ –5.38$ \pm 0.11 $ 36.75$ \pm 0.10 $ –4.21$ \pm $0.00 –36.98$ \pm 0.10 $
    BMS202 –40.23$ \pm 0.08 $ –3.57$ \pm 0.07 $ 22.35$ \pm 0.10 $ –4.31$ \pm $0.01 –25.75$ \pm 0.09 $
    INCB086550 –50.65$ \pm 0.14 $ –9.87$ \pm 0.17 $ 44.44$ \pm 0.27 $ –5.13$ \pm $0.02 –21.22$ \pm $0.15
    下载: 导出CSV
    Baidu
  • [1]

    Waldman A D, Fritz J M, Lenardo M J 2020 Nat. Rev. Immunol. 20 651Google Scholar

    [2]

    Wherry E J, Kurachi M 2015 Nat. Rev. Immunol. 15 486Google Scholar

    [3]

    Zou W, Wolchok J D, Chen L 2016 Sci. Transl. Med. 8 328rv4Google Scholar

    [4]

    Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z 2019 Mol. Cancer 18 10Google Scholar

    [5]

    Topalian S L, Drake C G, Pardoll D M 2015 Cancer Cell 27 450Google Scholar

    [6]

    Postow M A, Callahan M K, Wolchok J D 2015 J. Clin. Oncol. 33 1974Google Scholar

    [7]

    Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S 2022 Front. Immunol. 13 964442Google Scholar

    [8]

    Ai L, Xu A, Xu J 2020 Adv. Exp. Med. Biol. 1248 33Google Scholar

    [9]

    Dermani F K, Samadi P, Rahmani G, Kohlan A K, Najafi R 2019 J. Cell. Physiol. 234 1313Google Scholar

    [10]

    Parry R V, Chemnitz J M, Frauwirth K A, Lanfranco A R, Braunstein I, Kobayashi S V, Linsley P S, Thompson C B, Riley J L 2005 Mol. Cell. Biol. 25 9543Google Scholar

    [11]

    Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis V A 2012 Sci. Signal. 5 ra46Google Scholar

    [12]

    Hui E, Cheung J, Zhu J, Su X, Taylor M J, Wallweber H A, Sasmal D K, Huang J, Kim J M, Mellman I, Vale R D 2017 Science 355 1428Google Scholar

    [13]

    Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N 2002 Proc. Natl. Acad. Sci. U.S.A. 99 12293Google Scholar

    [14]

    Iwai Y, Terawaki S, Honjo T 2005 Int. Immunol. 17 133Google Scholar

    [15]

    Gong J, Chehrazi-Raffle A, Reddi S, Salgia R 2018 J. Immunother. Cancer 6 8Google Scholar

    [16]

    Akinleye A, Rasool Z 2019 J. Hematol. Oncol. 12 92Google Scholar

    [17]

    Shiravand Y, Khodadadi F, Kashani S M A, Hosseini-Fard S R, Hosseini S, Sadeghirad H, Ladwa R, O'Byrne K, Kulasinghe A 2022 Curr. Oncol. 29 3044Google Scholar

    [18]

    Zhang J, Zhang Y, Qu B, Yang H, Hu S, Dong X 2021 Eur. J. Med. Chem. 218 113356Google Scholar

    [19]

    Johnson D B, Nebhan C A, Moslehi J J, Balko J M 2022 Nat. Rev. Clin. Oncol. 19 254Google Scholar

    [20]

    Mould D R, Meibohm B 2016 BioDrugs 30 275Google Scholar

    [21]

    Wu Q, Jiang L, Li S C, He Q J, Yang B, Cao J 2021 Acta Pharmacol. Sin. 42 1Google Scholar

    [22]

    Zhan M M, Hu X Q, Liu X X, Ruan B F, Xu J, Liao C 2016 Drug Discov. Today 21 1027Google Scholar

    [23]

    Liu C, Seeram N P, Ma H 2021 Cancer Cell Int. 21 239Google Scholar

    [24]

    Chupak L S, Zheng X 2015 WO Patent 2015034820 A1

    [25]

    Zak K M, Grudnik P, Guzik K, Zieba B J, Musielak B, Dömling A, Dubin G, Holak T A 2016 Oncotarget 7 30323Google Scholar

    [26]

    Koblish H K, Wu L, Wang L S, Liu P C C, Wynn R, Rios-Doria J, Spitz S, Liu H, Volgina A, Zolotarjova N, Kapilashrami K, Behshad E, Covington M, Yang Y O, Li J, Diamond S, Soloviev M, O'Hayer K, Rubin S, Kanellopoulou C, Yang G, Rupar M, DiMatteo D, Lin L, Stevens C, Zhang Y, Thekkat P, Geschwindt R, Marando C, Yeleswaram S, Jackson J, Scherle P, Huber R, Yao W, Hollis G 2022 Cancer Discov. 12 1482Google Scholar

    [27]

    Jiang J, Zou X, Liu Y, Liu X, Dong K, Yao X, Feng Z, Chen X, Sheng L, Li Y 2021 Front. Pharmacol. 12 677120Google Scholar

    [28]

    Wang Y, Liu X, Zou X, Wang S, Luo L, Liu Y, Dong K, Yao X, Li Y, Chen X, Sheng L 2021 Pharmaceutics 13 598Google Scholar

    [29]

    Sobral P S, Luz V C C, Almeida J, Videira P A, Pereira F 2023 Int. J. Mol. Sci. 24 5908Google Scholar

    [30]

    Luo L, Zhong A, Wang Q, Zheng T 2021 Mar. Drugs 20 29Google Scholar

    [31]

    Acúrcio R C, Pozzi S, Carreira B, Pojo M, Gómez-Cebrián N, Casimiro S, Fernandes A, Barateiro A, Farricha V, Brito J, Leandro A P, Salvador J A R, Graça L, Puchades-Carrasco L, Costa L, Satchi-Fainaro R, Guedes R C, Florindo H F 2022 J. Immunother. Cancer 10 e004695Google Scholar

    [32]

    Lung J, Hung M S, Lin Y C, Hung C H, Chen C C, Lee K D, Tsai Y H 2020 Molecules 25 5293Google Scholar

    [33]

    Guo Y, Liang J, Liu B, Jin Y 2021 Int. J. Mol. Sci. 22 10924Google Scholar

    [34]

    Sterling T, Irwin J J 2015 J. Chem. Inf. Model. 55 2324Google Scholar

    [35]

    Bemis G W, Murcko M A 1996 J. Med. Chem. 39 2887Google Scholar

    [36]

    Rogers D, Hahn M 2010 J. Chem. Inf. Model. 50 742Google Scholar

    [37]

    Yap C W 2011 J. Comput. Chem. 32 1466Google Scholar

    [38]

    Durant J L, Leland B A, Henry D R, Nourse J G 2002 J. Chem. Inf. Comput. Sci. 42 1273Google Scholar

    [39]

    Moriwaki H, Tian Y S, Kawashita N, Takagi T 2018 J. Cheminform. 10 4Google Scholar

    [40]

    Bickerton G R, Paolini G V, Besnard J, Muresan S, Hopkins A L 2012 Nat. Chem. 4 90Google Scholar

    [41]

    Kosugi T, Ohue M 2021 Int. J. Mol. Sci. 22 10925Google Scholar

    [42]

    Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D 2021 Nucleic Acids Res. 49 W5Google Scholar

    [43]

    Jing T, Zhang Z, Kang Z, Mo J, Yue X, Lin Z, Fu X, Liu C, Ma H, Zhang X, Hu W 2023 J. Med. Chem. 66 6811Google Scholar

    [44]

    Qin M, Meng Y, Yang H, Liu L, Zhang H, Wang S, Liu C, Wu X, Wu D, Tian Y, Hou Y, Zhao Y, Liu Y, Xu C, Wang L 2021 J. Med. Chem. 64 5519Google Scholar

    [45]

    Trott O, Olson A J 2010 J. Comput. Chem. 31 455Google Scholar

    [46]

    Laskowski R A, Swindells M B 2011 J. Chem. Inf. Model. 51 2778Google Scholar

    [47]

    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell Jr. A D 2010 J. Comput. Chem. 31 671Google Scholar

    [48]

    Yu W, He X, Vanommeslaeghe K, MacKerell Jr. A D 2012 J. Comput. Chem. 33 2451Google Scholar

    [49]

    Vanommeslaeghe K, MacKerell Jr. A D 2012 J. Chem. Inf. Model. 52 3144Google Scholar

    [50]

    Vanommeslaeghe K, Raman E P, MacKerell Jr. A D 2012 J. Chem. Inf. Model. 52 3155Google Scholar

    [51]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1 19Google Scholar

    [52]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [53]

    Nosé S 1984 Mol. Phys. 52 255Google Scholar

    [54]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [55]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [56]

    Hess B, Bekker H, Berendsen H J C, Fraaije J G E M 1997 J. Comput. Chem. 18 1463Google Scholar

    [57]

    Valdés-Tresanco M S, Valdés-Tresanco M E, Valiente P A, Moreno E 2021 J. Chem. Theory Comput. 17 6281Google Scholar

    [58]

    Chupak L S, Ding M, Martin S W, Zheng X, Hewawasam P, Connolly T P, Xu N, Yeung K S, Zhu J, Langley D R, Tenney D J, Scola P M 2015 WO Patent 2015160641 A3

    [59]

    Wang T, Cai S, Wang M, Zhang W, Zhang K, Chen D, Li Z, Jiang S 2021 J. Med. Chem. 64 7390Google Scholar

    [60]

    Lu L, Qi Z, Wang T, Zhang X, Zhang K, Wang K, Cheng Y, Xiao Y, Li Z, Jiang S 2022 ACS Med. Chem. Lett. 13 586Google Scholar

    [61]

    Dai X, Wang K, Chen H, Huang X, Feng Z 2021 Bioorg. Chem. 114 105034Google Scholar

    [62]

    Le Biannic R, Magnez R, Klupsch F, Leleu-Chavain N, Thiroux B, Tardy M, El Bouazzati H, Dezitter X, Renault N, Vergoten G, Bailly C, Quesnel B, Thuru X, Millet R 2022 Eur. J. Med. Chem. 236 114343Google Scholar

    [63]

    Russomanno P, Assoni G, Amato J, D'Amore V M, Scaglia R, Brancaccio D, Pedrini M, Polcaro G, La Pietra V, Orlando P, Falzoni M, Cerofolini L, Giuntini S, Fragai M, Pagano B, Donati G, Novellino E, Quintavalle C, Condorelli G, Sabbatino F, Seneci P, Arosio D, Pepe S, Marinelli L 2021 J. Med. Chem. 64 16020Google Scholar

    [64]

    Liu L, Yao Z, Wang S, Xie T, Wu G, Zhang H, Zhang P, Wu Y, Yuan H, Sun H 2021 J. Med. Chem. 64 8391Google Scholar

    [65]

    Cheng B, Ren Y, Cao H, Chen J 2020 Eur. J. Med. Chem. 199 112377Google Scholar

    [66]

    Lipinski C A 2004 Drug Discov. Today Technol. 1 337Google Scholar

    [67]

    Liang J, Wang B, Yang Y, Liu B, Jin Y 2023 Int. J. Mol. Sci. 24 1280Google Scholar

  • [1] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测.  , 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测.  , 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法.  , 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [4] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟.  , 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [5] 张嘉晖. 蛋白质计算中的机器学习.  , 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [6] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变.  , 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [7] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用.  , 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [8] 陈光临, 张志勇. 使用中间层受监督的自编码器探索蛋白质的构象空间.  , 2023, 72(24): 248705. doi: 10.7498/aps.72.20231060
    [9] 罗启睿, 沈一凡, 罗孟波. 高分子塌缩相变和临界吸附相变的计算机模拟和机器学习.  , 2023, 72(24): 240502. doi: 10.7498/aps.72.20231058
    [10] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法.  , 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [11] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用.  , 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [12] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究.  , 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [13] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [14] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习.  , 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [15] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟.  , 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [16] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法.  , 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [17] 刘武, 朱成皖, 李昊天, 赵谡玲, 乔泊, 徐征, 宋丹丹. 基于机器学习和器件模拟对Cu(In,Ga)Se2电池中Ga含量梯度的优化分析.  , 2021, 70(23): 238802. doi: 10.7498/aps.70.20211234
    [18] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究.  , 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [19] 熊开欣, 席昆, 鲍磊, 张忠良, 谭志杰. 脱氧核糖核酸柔性的分子动力学模拟:Amber bsc1和bsc0力场的对比研究.  , 2018, 67(10): 108701. doi: 10.7498/aps.67.20180326
    [20] 董垒, 王卫国. 纯铜[0 1 1]倾侧型非共格3晶界结构稳定性分子动力学模拟研究.  , 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
计量
  • 文章访问数:  3434
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-29
  • 修回日期:  2023-08-10
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-12-20

/

返回文章
返回
Baidu
map