搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分形理论的亚毫米间隙正负极性流注放电特性

邵茁凯 孙志 刘坤 王宸 周盈旭 孙伟峰

引用本文:
Citation:

基于分形理论的亚毫米间隙正负极性流注放电特性

邵茁凯, 孙志, 刘坤, 王宸, 周盈旭, 孙伟峰

Discharge characteristics of positive and negative polarity streamers with submillimeter gap based on fractal theory

Shao Zhuo-Kai, Sun Zhi, Liu Kun, Wang Chen, Zhou Ying-Xu, Sun Wei-Feng
PDF
HTML
导出引用
  • 为研究亚毫米间隙下流注放电特性, 本文搭建了大气压下100—500 μm间隙下的正负极性流注放电实验系统以及图像采集系统, 采集100—500 μm间隙下正负极性流注放电的起始击穿电压与击穿图像并使用Matlab计算实验放电图像的分形维数. 实验分析发现100—500 μm间隙下的空气击穿放电依旧符合流注理论, 且正、负极性流注的击穿电压与放电图像分形维数的极性效应明显, 流注理论中空间电荷与光电离对放电通道曲折程度与覆盖范围的影响随着间隙增大而增大, 且在300 μm时发生跃变. 使用Matlab基于分形理论的WZ (Wiesmann-Zeller)模型建立500 μm间隙下正、负极性流注放电分形仿真, 发现发展概率指数η与分形维数成反比, 且同放电条件下放电发展概率指数η在正极性流注中相对于负极性流注要更小.
    In order to study the characteristics of streamer discharge in sub-millimeter gap, an experimental system and an image acquisition system of positive and negative polarity streamer discharge in the gap of 100–500 μm at atmospheric pressure are built, and the initial breakdown voltages and breakdown images of positive and negative polarity streamer discharge in a gap range of 100–500 μm are collected, and the fractal dimension of the experimental discharge images is calculated by Matlab. The experimental analysis shows that the air breakdown discharge in the gap range of 100–500 μm still conforms to the stream theory, and the polarity effect between the breakdown voltage of positive and negative streamers and the fractal dimension of the discharge image is obvious. The influence of space charge and photoionization on the meandering degree and coverage of the discharge channel in stream theory increase with the increase of the gap, and jump at 300 μm. The fractal simulation of positive and negative streamer discharge with a gap of 500 μm is established by using WZ (Wiesmann-Zeller) model based on fractal theory in Matlab. It is found that the development probability index η is inversely proportional to the fractal dimension, and that the η is smaller in positive streamer than in negative streamer under the same discharge condition.
      通信作者: 孙志, sunzhimems@163.com
    • 基金项目: 国家自然科学基金(批准号: 51607048)资助的课题.
      Corresponding author: Sun Zhi, sunzhimems@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51607048).
    [1]

    欧阳吉庭, 张宇, 秦宇 2016 高电压技术 42 673Google Scholar

    Ouyang J T, Zhang Y, Qin Y 2016 High Voltage Eng. 42 673Google Scholar

    [2]

    孟国栋, 成永红, 酉小广, 吴锴 2012 西安交通大学学报 46 106Google Scholar

    Meng G D, Cheng Y H, You X G, Wu K 2012 J. Xi’an Jiaotong Univ. 46 106Google Scholar

    [3]

    Meek J M 1940 Phys. Rev. 57 722Google Scholar

    [4]

    刘典, 夏胜国 2015 高电压技术 41 282Google Scholar

    Liu D, Xia S G 2015 High Volt. Eng. 41 282Google Scholar

    [5]

    程文馨 2018 硕士学位论文 (南京: 南京航空航天大学)

    Cheng W X 2018 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [6]

    王成江, 涂鸣麟, 方洋洋, 沈书林, 李亚莎 2019 绝缘材料 52 57Google Scholar

    Wang C J, Tu M L, Fang Y Y, Shen S L, Li Y S 2019 Insul. Mater. 52 57Google Scholar

    [7]

    Ono R, Komuro A 2019 J. Phys. D: Appl. Phys. 53 035202Google Scholar

    [8]

    Starikovskiy A Y, Aleksandrov N L 2020 Plasma Sources Sci. Technol. 29 075004Google Scholar

    [9]

    Sosnin E A, Panarin V A, Skakun V S, Baksht E Kh, Kuznetsov V S, Sorokin D A 2022 Russ. Phys. J. 65 1194Google Scholar

    [10]

    赵志航, 魏新劳, 姚远航, 朱博, 聂洪岩, 李毅恒 2022 中国电机工程学报 43 4034Google Scholar

    Zhao Z H, Wei X L, Yao Y H, Zhu B, Nie H Y, Li Y H 2022 Chin. Soc. Electr. Eng. 43 4034Google Scholar

    [11]

    蒋兴良, 吴建国, 任晓东, 胡建林, 张志劲 2023 高电压技术 49 1743Google Scholar

    Jiang X L, Wu J G, Ren X D, Hu J L, Zhang Z J 2023 High Voltage Eng. 49 1743Google Scholar

    [12]

    Niemeyer L, Pietronero L, Wiesmann H J 1984 Phys. Rev. Lett. 52 1033Google Scholar

    [13]

    Wiesmann H J, Zeller H R A 1986 J. Appl. Phys. 60 1770Google Scholar

    [14]

    Amarasinghe D, Sonnadara U 2009 J. Sci. 6 57Google Scholar

    [15]

    薛福明 2012 硕士学位论文 (哈尔滨: 哈尔滨理工大学)

    Xue F M 2012 M. S. Thesis (Harbin: Harbin University of Science and Technology

    [16]

    郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆 2016 65 024703Google Scholar

    Zheng D C, Ding N, Shen X D, Zhao D W, Zheng Q P, Wei H Q 2016 Acta Phys. Sin. 65 024703Google Scholar

    [17]

    赵大帅, 孙志, 孙兴, 孙怀得, 韩柏 2021 70 205207Google Scholar

    Zhao D S, Sun Z, Sun X, Sun H D, Han B 2021 Acta Phys. Sin. 70 205207Google Scholar

    [18]

    Geng J H, Wang Q S, Liu X M, Wang P, Lü F C, Ding Y J 2022 Plasma Sci. Technol. 24 095402Google Scholar

    [19]

    王江涛, 杨建梅 2013 复杂系统与复杂性科学 10 1Google Scholar

    Wang J T, Yang J M 2013 Complex Syst. Complex. Sci. 10 1Google Scholar

    [20]

    Canny J 1986 IEEE Trans. Pattern Anal. Mach. Intell. 8 679Google Scholar

    [21]

    高电压试验技术 局部放电测量 第3页

    High Voltage Test Techniques-Partial Discharge Measurements p3

    [22]

    Zhang Q Z, Zhang L, Yang D Z 2021 Plasma Processes and Polym. 18 200234Google Scholar

    [23]

    Zhang Y, Wang H, Zhang Y, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 54002Google Scholar

    [24]

    于亮2005 硕士学位论文 (重庆: 重庆大学)

    Yu L 2005 M. S. Thesis (Chongqing: Chongqing University

  • 图 1  实验装置图

    Fig. 1.  Experimental device diagram.

    图 2  实验原理图

    Fig. 2.  Experimental schematic diagram.

    图 3  针-板放电系统图像

    Fig. 3.  Image of needle-plate discharge system.

    图 4  100—500 μm正极性流注起始击穿图像

    Fig. 4.  Initial breakdown image of 100–500 μm positive polarity streamer.

    图 5  100—500 μm负极性流注起始击穿图像

    Fig. 5.  Initial breakdown image of 100–500 μm negative polarity streamer.

    图 6  亚毫米间隙正极性流注原理图

    Fig. 6.  Schematic diagram of positive polarity streamer with submillimeter gap.

    图 7  亚毫米间隙负极性流注原理图

    Fig. 7.  Schematic diagram of negative polarity streamer with sub-millimeter gap.

    图 8  实验所得100—500 μm正负极性起始流注击穿电压平均值

    Fig. 8.  Average breakdown voltage of 100–500 μm streamer with positive and negative polarity obtained by experiment.

    图 9  实验所得100—500 μm正负极性流注击穿图像分形维数平均值

    Fig. 9.  Average fractal dimension of 100–500 μm experimental streamer breakdown images with positive and negative polarity.

    图 10  仿真放电模型

    Fig. 10.  Simulated discharge model.

    图 11  正极性流注分形仿真图 (a) η = 0.30, D = 1.5789; (b) η = 0.20, D = 1.6011; (c) η = 0.19, D = 1.6167; (d) η = 0.10, D = 1.6663

    Fig. 11.  Fractal simulation diagram of positive polarity streamer: (a) η = 0.30, D = 1.5789; (b) η = 0.20, D = 1.6011; (c) η = 0.19, D = 1.6167; (d) η = 0.10, D = 1.6663.

    图 12  负极性流注分形仿真图 (a) η = 0.50, D = 1.4975; (b) η = 0.45, D = 1.5110; (c) η = 0.43, D = 1.5183; (d) η = 0.40, D = 1.5284

    Fig. 12.  Fractal simulation diagram of negative polarity streamer: (a) η = 0.50, D = 1.4975; (b) η = 0.45, D = 1.5110; (c) η = 0.43, D = 1.5183; (d) η = 0.40, D = 1.5284.

    表 1  正极性流注放电仿真分形维数

    Table 1.  Fractal dimension of positive streamer discharge simulation.

    仿真次数η = 0.30η = 0.21η = 0.20η = 0.19η = 0.18η = 0.17η = 0.1
    11.58491.56131.59941.61761.58731.62111.6914
    21.58841.61551.6461.631.62681.67281.6663
    31.56211.57351.60111.60531.62061.61231.6741
    41.56821.61161.61811.60751.61631.58581.6555
    51.57891.59291.58411.59031.59251.64841.6622
    61.52631.61761.57561.61161.62881.65911.6314
    71.60261.62191.62451.60091.65941.60381.6611
    81.55041.62281.63211.66321.65231.63821.6605
    91.58391.62971.6041.57041.66541.62351.6744
    101.55491.5961.59761.62641.59591.64461.6181
    均值1.57011.60431.60831.61231.62451.6311.6595
    95%置信区间[1.4916,
    1.6486]
    [1.5241,
    1.6845]
    [1.5278,
    1.6887]
    [1.5317,
    1.6929]
    [1.5433,
    1.7058]
    [1.5494,
    1.7125]
    [1.5765,
    1.7425]
    下载: 导出CSV

    表 2  负极性流注放电仿真分形维数

    Table 2.  Fractal dimension of negative streamer discharge simulation.

    仿真次数 η = 0.5 η = 0.45 η = 0.44 η = 0.43 η = 0.42 η = 0.41 η = 0.4
    1 1.5312 1.4781 1.5484 1.5183 1.5366 1.5127 1.5607
    2 1.4896 1.5559 1.5114 1.4996 1.5098 1.5177 1.5479
    3 1.4376 1.5340 1.5087 1.5635 1.4537 1.5584 1.5257
    4 1.4896 1.5277 1.5196 1.5344 1.5282 1.4970 1.4987
    5 1.4839 1.5680 1.4784 1.461 1.5824 1.5003 1.5432
    6 1.4708 1.511 1.5049 1.506 1.5222 1.5226 1.4779
    7 1.5265 1.4753 1.5449 1.4963 1.4911 1.5190 1.5441
    8 1.5140 1.4610 1.5194 1.5434 1.5344 1.5356 1.5306
    9 1.5179 1.5242 1.5127 1.5615 1.5222 1.5711 1.5238
    10 1.4975 1.5224 1.5222 1.5112 1.5434 1.5168 1.5284
    均值 1.4959 1.5158 1.5171 1.5195 1.5224 1.5251 1.5281
    95%置信区间 [1.4211,
    1.5707]
    [1.4400,
    1.5915]
    [1.4412,
    1.5929]
    [1.4435,
    1.5955]
    [1.4463,
    1.5985]
    [1.4489,
    1.6014]
    [1.4517,
    1.6045]
    下载: 导出CSV
    Baidu
  • [1]

    欧阳吉庭, 张宇, 秦宇 2016 高电压技术 42 673Google Scholar

    Ouyang J T, Zhang Y, Qin Y 2016 High Voltage Eng. 42 673Google Scholar

    [2]

    孟国栋, 成永红, 酉小广, 吴锴 2012 西安交通大学学报 46 106Google Scholar

    Meng G D, Cheng Y H, You X G, Wu K 2012 J. Xi’an Jiaotong Univ. 46 106Google Scholar

    [3]

    Meek J M 1940 Phys. Rev. 57 722Google Scholar

    [4]

    刘典, 夏胜国 2015 高电压技术 41 282Google Scholar

    Liu D, Xia S G 2015 High Volt. Eng. 41 282Google Scholar

    [5]

    程文馨 2018 硕士学位论文 (南京: 南京航空航天大学)

    Cheng W X 2018 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [6]

    王成江, 涂鸣麟, 方洋洋, 沈书林, 李亚莎 2019 绝缘材料 52 57Google Scholar

    Wang C J, Tu M L, Fang Y Y, Shen S L, Li Y S 2019 Insul. Mater. 52 57Google Scholar

    [7]

    Ono R, Komuro A 2019 J. Phys. D: Appl. Phys. 53 035202Google Scholar

    [8]

    Starikovskiy A Y, Aleksandrov N L 2020 Plasma Sources Sci. Technol. 29 075004Google Scholar

    [9]

    Sosnin E A, Panarin V A, Skakun V S, Baksht E Kh, Kuznetsov V S, Sorokin D A 2022 Russ. Phys. J. 65 1194Google Scholar

    [10]

    赵志航, 魏新劳, 姚远航, 朱博, 聂洪岩, 李毅恒 2022 中国电机工程学报 43 4034Google Scholar

    Zhao Z H, Wei X L, Yao Y H, Zhu B, Nie H Y, Li Y H 2022 Chin. Soc. Electr. Eng. 43 4034Google Scholar

    [11]

    蒋兴良, 吴建国, 任晓东, 胡建林, 张志劲 2023 高电压技术 49 1743Google Scholar

    Jiang X L, Wu J G, Ren X D, Hu J L, Zhang Z J 2023 High Voltage Eng. 49 1743Google Scholar

    [12]

    Niemeyer L, Pietronero L, Wiesmann H J 1984 Phys. Rev. Lett. 52 1033Google Scholar

    [13]

    Wiesmann H J, Zeller H R A 1986 J. Appl. Phys. 60 1770Google Scholar

    [14]

    Amarasinghe D, Sonnadara U 2009 J. Sci. 6 57Google Scholar

    [15]

    薛福明 2012 硕士学位论文 (哈尔滨: 哈尔滨理工大学)

    Xue F M 2012 M. S. Thesis (Harbin: Harbin University of Science and Technology

    [16]

    郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆 2016 65 024703Google Scholar

    Zheng D C, Ding N, Shen X D, Zhao D W, Zheng Q P, Wei H Q 2016 Acta Phys. Sin. 65 024703Google Scholar

    [17]

    赵大帅, 孙志, 孙兴, 孙怀得, 韩柏 2021 70 205207Google Scholar

    Zhao D S, Sun Z, Sun X, Sun H D, Han B 2021 Acta Phys. Sin. 70 205207Google Scholar

    [18]

    Geng J H, Wang Q S, Liu X M, Wang P, Lü F C, Ding Y J 2022 Plasma Sci. Technol. 24 095402Google Scholar

    [19]

    王江涛, 杨建梅 2013 复杂系统与复杂性科学 10 1Google Scholar

    Wang J T, Yang J M 2013 Complex Syst. Complex. Sci. 10 1Google Scholar

    [20]

    Canny J 1986 IEEE Trans. Pattern Anal. Mach. Intell. 8 679Google Scholar

    [21]

    高电压试验技术 局部放电测量 第3页

    High Voltage Test Techniques-Partial Discharge Measurements p3

    [22]

    Zhang Q Z, Zhang L, Yang D Z 2021 Plasma Processes and Polym. 18 200234Google Scholar

    [23]

    Zhang Y, Wang H, Zhang Y, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 54002Google Scholar

    [24]

    于亮2005 硕士学位论文 (重庆: 重庆大学)

    Yu L 2005 M. S. Thesis (Chongqing: Chongqing University

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化.  , 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [2] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电.  , 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [3] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响.  , 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [4] 李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军. 针-板空气间隙流注放电起始过程的三维PIC/MCC仿真研究.  , 2018, 67(4): 045101. doi: 10.7498/aps.67.20172309
    [5] 郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆. 基于分形理论的尖-板电极短空气隙放电现象研究.  , 2016, 65(2): 024703. doi: 10.7498/aps.65.024703
    [6] 陈书赢, 王海斗, 马国政, 康嘉杰, 徐滨士. 等离子喷涂层原生性孔隙几何结构的分形及统计特性.  , 2015, 64(24): 240504. doi: 10.7498/aps.64.240504
    [7] 张延惠, 沈志朋, 蔡祥吉, 徐秀兰, 高嵩. 二维Hénon-Heiles势及其变形势体系逃逸率与分形维数的研究.  , 2015, 64(23): 230501. doi: 10.7498/aps.64.230501
    [8] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制.  , 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [9] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究.  , 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [10] 杨秦男, 张延惠, 蔡祥吉, 蒋国辉, 徐学友. RIKEN介观器件腔中粒子输运过程的混沌性质及分形自相似结构研究.  , 2013, 62(8): 080505. doi: 10.7498/aps.62.080505
    [11] 火元莲, 张广庶, 吕世华, 袁萍. 闪电的分形特征研究及其在自动识别中的应用.  , 2013, 62(5): 059201. doi: 10.7498/aps.62.059201
    [12] 罗哲贤, 余晖, 平凡, 马革兰. 涡旋轴对称化的分形维数表征.  , 2012, 61(24): 244702. doi: 10.7498/aps.61.244702
    [13] 刘金海, 张化光, 冯 健. 输油管道压力时间序列混沌特性研究.  , 2008, 57(11): 6868-6877. doi: 10.7498/aps.57.6868
    [14] 姜 斌, 王宏强, 黎 湘, 郭桂蓉. 海杂波背景下的目标检测新方法.  , 2006, 55(8): 3985-3991. doi: 10.7498/aps.55.3985
    [15] 盛永刚, 徐 耀, 李志宏, 吴 东, 孙予罕, 吴中华. 气体吸附法测定二氧化硅干凝胶的分形维数.  , 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [16] 汪 渊, 徐可为. Cu-W薄膜表面形貌的分形表征与电阻率.  , 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [17] 荣利霞, 解立平, 董宝中, 林伟刚, 王 俊. 同步辐射小角x射线散射方法研究由城市固体垃圾制备的活性炭.  , 2003, 52(3): 630-634. doi: 10.7498/aps.52.630
    [18] 荣利霞, 魏柳荷, 董宝中, 王俊, 李福绵, 李子臣. 两亲性嵌段聚合物的同步辐射小角x射线散射研究.  , 2002, 51(8): 1773-1777. doi: 10.7498/aps.51.1773
    [19] 孙霞, 吴自勤. 规则表面形貌的分形和多重分形描述.  , 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
    [20] 郑德娟, 李 丹, 周 雁, 韩宝善. 枝状畴的形成及分形维数计算.  , 1999, 48(13): 250-256. doi: 10.7498/aps.48.250.2
计量
  • 文章访问数:  2708
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-04
  • 修回日期:  2023-07-17
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-10-05

/

返回文章
返回
Baidu
map