-
The graded thermal conductivity in nanoscale “hot spot” system is a new phenomenon in nanoscale heat conduction. It is found that the thermal conductivity is no longer uniform, and the thermal conductivity gradually increases from the inside to the outside in the radial direction, which no longer obeys Fourier’s law of thermal conductivity. An in-depth understanding of the mechanism of the graded thermal conductivity can provide a theoretical basis for solving engineering problems such as heat dissipation of nanochip. This paper first reviews the new phenomenon of heat conduction recently discovered in nanosystem, then, focuses on the graded thermal conductivity in the “hot spot” system, and expounds the variation law of the graded thermal conductivity in different dimensional systems. According to the changes of atomic vibration mode and phonon scattering, the physical mechanism of the graded thermal conductivity is explained. Finally, the new challenges and opportunities brought by the graded thermal conductivity characteristics of nano “hot spot” to the heat dissipation of nanodevices are summarized, and the future research in this direction is also prospected.
-
Keywords:
- phonon engineering /
- micro-nanoscale thermal conduction /
- nanochip thermal management /
- nano “hot spots” /
- graded thermal conductivity
[1] Bar-Cohen A, Maurer J J, Altman D H 2019 J. Electron. Packag. 141 40803
Google Scholar
[2] Hao X, Peng B, Xie G, Chen Y 2016 Appl. Therm. Eng. 100 170
Google Scholar
[3] Yan Z, Liu G, Khan J M, Balandin A A 2012 Nat. Commun. 3 827
Google Scholar
[4] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y, Ren T 2022 Nature 603 259
Google Scholar
[5] Wang Z, Zhao R, Chen Y 2010 Sci. China Technol. Sci. 53 429
Google Scholar
[6] Chen Y, Li D, Yang J, Wu Y, Lukes J R, Majumdar A 2004 Phys. B Condens. Matter 349 270
Google Scholar
[7] Yang N, Zhang G, Li B 2010 Nano Today 5 85
Google Scholar
[8] Yang N, Zhang G, Li B 2008 Nano Lett. 8 276
Google Scholar
[9] Zhang G, Zhang Y 2015 Mech. Mater. 91 382
Google Scholar
[10] Cao B, Yao W, Ye Z 2016 Carbon 96 711
Google Scholar
[11] Hao Q, Xiao Y, Chen Q 2019 Mater. Today Phys. 10 100126
Google Scholar
[12] Zhang D, Wang K, Chen S, Zhang L, Ni Y, Zhang G 2023 Nanoscale 15 1180
Google Scholar
[13] Zhang H, Sun B, Hu S, Wang H, Cheng Y, Xiong S, Volz S, Ni Y 2020 Phys. Rev. B 101 205418
Google Scholar
[14] Yang N, Xu X, Zhang G, Li B 2012 AIP Adv. 2 41410
Google Scholar
[15] Maruyama S 2002 Phys. B Condens. Matter 323 193
Google Scholar
[16] Zhang G, Li B 2005 J. Chem. Phys. 123 14705
Google Scholar
[17] Yang L, Tao Y, Zhu Y, Akter M, Wang K, Pan Z, Zhao Y, Zhang Q, Xu Y, Chen R, Xu T T, Chen Y, Mao Z, Li D 2021 Nat. Nanotechnol. 16 764
Google Scholar
[18] Xu X, Pereira L F C, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T L, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689
Google Scholar
[19] Xu X, Chen J, Li B 2016 J. Phys. Condens. Matter 28 483001
Google Scholar
[20] Nika D L, Ghosh S, Pokatilov E P, Balandin A A 2009 Appl. Phys. Lett. 94 203103
Google Scholar
[21] Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896
Google Scholar
[22] Prosen T, Campbell D K 2000 Phys. Rev. Lett. 84 2857
Google Scholar
[23] Lepri S 2003 Phys. Rep. 377 1
Google Scholar
[24] Dhar A 2008 Adv. Phys. 57 457
Google Scholar
[25] Wang L, Hu B, Li B 2012 Phys. Rev. E 86 40101
Google Scholar
[26] Pan D, Zong Z, Yang N 2022 Acta Phys. Sin. 71 86302 (in Chinses) [潘东楷, 宗志成, 杨诺 2022 71 86302
Google Scholar
Pan D, Zong Z, Yang N 2022 Acta Phys. Sin.71 86302 (in Chinses)Google Scholar
[27] Chen G 2000 J. Nanopart. Res. 2 199
Google Scholar
[28] Yang N, Hu S, Ma D, Lu T, Li B 2015 Sci. Rep. 5 14878
Google Scholar
[29] Ma D, Ding H, Wang X, Yang N, Zhang X 2017 Int. J. Heat Mass Tran. 108 940
Google Scholar
[30] Zhang C, Ma D, Shang M, Wan X, Lü J, Guo Z, Li B, Yang N 2022 Mater. Today Phys. 22 100605
Google Scholar
[31] Markworth A J, Ramesh K S, Parks W P 1995 J. Mater. Sci. 30 2183
Google Scholar
[32] Liew K M, Kitipornchai S, Zhang X Z, Lim C W 2003 Int. J. Solids Struct. 40 2355
Google Scholar
[33] Gang C 1996 J. Heat Transfer 118 539
Google Scholar
[34] Huang D, Sun Q, Liu Z, Xu S, Yang R, Yue Y 2023 Adv. Sci. 10 2204777
Google Scholar
[35] Tang X, Xu S, Wang X 2013 Plos One 8 e58030
Google Scholar
[36] Luo S, Fan A, Zhang Y, Wang H, Ma W, Zhang X 2022 Int. J. Heat Mass Trans. 184 122271
Google Scholar
[37] Braun O, Furrer R, Butti P, Thodkar K, Shorubalko I, Zardo I, Calame M, Perrin M L 2022 NPJ 2D Mater. Appl. 6 1
Google Scholar
[38] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
Google Scholar
[39] Cahill D G 2004 Rev. Sci. Instrum. 75 5119
Google Scholar
[40] Schmidt A J, Chen X, Chen G 2008 Rev. Sci. Instrum. 79 114902
Google Scholar
[41] Minnich A J 2012 Phys. Rev. Lett. 109 205901
Google Scholar
[42] Zeng L, Collins K C, Hu Y, Luckyanova M N, Maznev A A, Huberman S, Chiloyan V, Zhou J, Huang X, Nelson K A, Chen G 2015 Sci. Rep. 5 17131
Google Scholar
[43] Hu Y, Zeng L, Minnich A J, Dresselhaus M S, Chen G 2015 Nat. Nanotechnol. 10 701
Google Scholar
[44] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B, Yang N 2017 Nano Lett. 17 5805
Google Scholar
[45] Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N, Xu D 2019 Mater. Today Phys. 11 100139
Google Scholar
[46] Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305
Google Scholar
[47] Lindsay L, Broido D A, Mingo N 2009 Phys. Rev. B 80 125407
Google Scholar
[48] Li X, Lee S 2019 Phys. Rev. B 99 85202
Google Scholar
-
图 1 纳米“热点”系统示意图 (a)准一维结构, 例如碳纳米锥(台); (b)二维结构, 例如石墨烯圆盘; (c)三维结构剖视图
Fig. 1. Schematic diagram of nanometer “hot spot” system: (a) Quasi-one-dimensional structures, such as carbon nanocones and truncated carbon nanocones; (b) two-dimensional structures, such as graphene disks; (c) three-dimensional cross-sectional view of the structure.
图 2 “热点”石墨烯圆盘的温度梯度分布和热导率对归一化半径的依赖关系[30] (a), (b)固定系统外半径
$L = 20$ μm, 改变系统的温度; (c), (d)固定系统的参考温度${T_0} = 300$ K, 热点温度Th和边缘的温度Tc分别为${T_0} \pm {{\Delta T} \mathord{\left/ {\vphantom {{\Delta T} 2}} \right. } 2}$ , 改变系统的尺寸Fig. 2. Dependence of temperature gradient distribution and thermal conductivity on normalized radius of “hot spot” graphene disk[30]: (a), (b) Fix the outer radius of the system
$L = 20$ μm, change the temperature of the system; (c), (d) fix the reference temperature of the system${T_0} = 300$ K, the hot spot temperature Th and the temperature Tc of the edge are${T_0} \pm {{\Delta T} \mathord{\left/ {\vphantom {{\Delta T} 2}} \right. } 2}$ , respectively, change the size of the system. -
[1] Bar-Cohen A, Maurer J J, Altman D H 2019 J. Electron. Packag. 141 40803
Google Scholar
[2] Hao X, Peng B, Xie G, Chen Y 2016 Appl. Therm. Eng. 100 170
Google Scholar
[3] Yan Z, Liu G, Khan J M, Balandin A A 2012 Nat. Commun. 3 827
Google Scholar
[4] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y, Ren T 2022 Nature 603 259
Google Scholar
[5] Wang Z, Zhao R, Chen Y 2010 Sci. China Technol. Sci. 53 429
Google Scholar
[6] Chen Y, Li D, Yang J, Wu Y, Lukes J R, Majumdar A 2004 Phys. B Condens. Matter 349 270
Google Scholar
[7] Yang N, Zhang G, Li B 2010 Nano Today 5 85
Google Scholar
[8] Yang N, Zhang G, Li B 2008 Nano Lett. 8 276
Google Scholar
[9] Zhang G, Zhang Y 2015 Mech. Mater. 91 382
Google Scholar
[10] Cao B, Yao W, Ye Z 2016 Carbon 96 711
Google Scholar
[11] Hao Q, Xiao Y, Chen Q 2019 Mater. Today Phys. 10 100126
Google Scholar
[12] Zhang D, Wang K, Chen S, Zhang L, Ni Y, Zhang G 2023 Nanoscale 15 1180
Google Scholar
[13] Zhang H, Sun B, Hu S, Wang H, Cheng Y, Xiong S, Volz S, Ni Y 2020 Phys. Rev. B 101 205418
Google Scholar
[14] Yang N, Xu X, Zhang G, Li B 2012 AIP Adv. 2 41410
Google Scholar
[15] Maruyama S 2002 Phys. B Condens. Matter 323 193
Google Scholar
[16] Zhang G, Li B 2005 J. Chem. Phys. 123 14705
Google Scholar
[17] Yang L, Tao Y, Zhu Y, Akter M, Wang K, Pan Z, Zhao Y, Zhang Q, Xu Y, Chen R, Xu T T, Chen Y, Mao Z, Li D 2021 Nat. Nanotechnol. 16 764
Google Scholar
[18] Xu X, Pereira L F C, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T L, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689
Google Scholar
[19] Xu X, Chen J, Li B 2016 J. Phys. Condens. Matter 28 483001
Google Scholar
[20] Nika D L, Ghosh S, Pokatilov E P, Balandin A A 2009 Appl. Phys. Lett. 94 203103
Google Scholar
[21] Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896
Google Scholar
[22] Prosen T, Campbell D K 2000 Phys. Rev. Lett. 84 2857
Google Scholar
[23] Lepri S 2003 Phys. Rep. 377 1
Google Scholar
[24] Dhar A 2008 Adv. Phys. 57 457
Google Scholar
[25] Wang L, Hu B, Li B 2012 Phys. Rev. E 86 40101
Google Scholar
[26] Pan D, Zong Z, Yang N 2022 Acta Phys. Sin. 71 86302 (in Chinses) [潘东楷, 宗志成, 杨诺 2022 71 86302
Google Scholar
Pan D, Zong Z, Yang N 2022 Acta Phys. Sin.71 86302 (in Chinses)Google Scholar
[27] Chen G 2000 J. Nanopart. Res. 2 199
Google Scholar
[28] Yang N, Hu S, Ma D, Lu T, Li B 2015 Sci. Rep. 5 14878
Google Scholar
[29] Ma D, Ding H, Wang X, Yang N, Zhang X 2017 Int. J. Heat Mass Tran. 108 940
Google Scholar
[30] Zhang C, Ma D, Shang M, Wan X, Lü J, Guo Z, Li B, Yang N 2022 Mater. Today Phys. 22 100605
Google Scholar
[31] Markworth A J, Ramesh K S, Parks W P 1995 J. Mater. Sci. 30 2183
Google Scholar
[32] Liew K M, Kitipornchai S, Zhang X Z, Lim C W 2003 Int. J. Solids Struct. 40 2355
Google Scholar
[33] Gang C 1996 J. Heat Transfer 118 539
Google Scholar
[34] Huang D, Sun Q, Liu Z, Xu S, Yang R, Yue Y 2023 Adv. Sci. 10 2204777
Google Scholar
[35] Tang X, Xu S, Wang X 2013 Plos One 8 e58030
Google Scholar
[36] Luo S, Fan A, Zhang Y, Wang H, Ma W, Zhang X 2022 Int. J. Heat Mass Trans. 184 122271
Google Scholar
[37] Braun O, Furrer R, Butti P, Thodkar K, Shorubalko I, Zardo I, Calame M, Perrin M L 2022 NPJ 2D Mater. Appl. 6 1
Google Scholar
[38] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
Google Scholar
[39] Cahill D G 2004 Rev. Sci. Instrum. 75 5119
Google Scholar
[40] Schmidt A J, Chen X, Chen G 2008 Rev. Sci. Instrum. 79 114902
Google Scholar
[41] Minnich A J 2012 Phys. Rev. Lett. 109 205901
Google Scholar
[42] Zeng L, Collins K C, Hu Y, Luckyanova M N, Maznev A A, Huberman S, Chiloyan V, Zhou J, Huang X, Nelson K A, Chen G 2015 Sci. Rep. 5 17131
Google Scholar
[43] Hu Y, Zeng L, Minnich A J, Dresselhaus M S, Chen G 2015 Nat. Nanotechnol. 10 701
Google Scholar
[44] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B, Yang N 2017 Nano Lett. 17 5805
Google Scholar
[45] Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N, Xu D 2019 Mater. Today Phys. 11 100139
Google Scholar
[46] Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305
Google Scholar
[47] Lindsay L, Broido D A, Mingo N 2009 Phys. Rev. B 80 125407
Google Scholar
[48] Li X, Lee S 2019 Phys. Rev. B 99 85202
Google Scholar
计量
- 文章访问数: 5141
- PDF下载量: 178
- 被引次数: 0