搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于一维精细结构电磁目标模拟的通用HIE-FDTD方法及程序实现

牟春晖 陈娟 范凯航 鲁艺

引用本文:
Citation:

适用于一维精细结构电磁目标模拟的通用HIE-FDTD方法及程序实现

牟春晖, 陈娟, 范凯航, 鲁艺

Universal HIE-FDTD method and progarm implementation for one-dimensional fine structure electromagnetic target simulation

Mou Chun-Hui, Chen Juan, Fan Kai-Hang, Lu Yi
PDF
HTML
导出引用
  • 混合显-隐式时域有限差分方法的时间步长只由空间两个方向上的网格大小决定, 因而该方法被广泛应用于沿一个方向具有精细结构的电磁目标的模拟. 本文通过对传统时域有限差分方法基本公式进行近似, 给出适用于线性、非色散空间, 一维精细结构电磁目标模拟的通用混合显-隐式时域有限差分方法. 在通用混合显-隐式时域有限差分方法中, 通过媒质编号索引和迭代系数空间定位实现三对角矩阵的自动构建, 引入等效参数方法解决麦克斯韦方程微分形式在不同介质分界面失效的问题, 引入卷积完全匹配层边界条件对计算区域进行截断. 此外, 本文提出了一种缩减三对角矩阵数量的方法, 该方法可有效降低程序运行所需内存, 提高程序运行效率. 应用通用混合显-隐式时域有限差分方法仿真了平面波照射介质板和双频微带倒F天线两个模型, 数值计算结果与传统时域有限差分方法和CST软件的计算结果一致, 但与传统时域有限差分方法相比, 通用混合显-隐式时域有限差分方法的计算效率大大提高.
    The hybrid implicit-explicit finite-difference time-domain (HIE-FDTD) method is a weakly conditionally stable finite-difference time-domain (FDTD) method. The time step size of the HIE-FDTD method is only confined by the two coarse spatial cell sizes, so it is widely used in the simulation of electromagnetic targets with fine structures along one direction. In this work, the basic iterative formulations of the HIE-FDTD method are proposed by approximating the formulations of the FDTD method. In these formulations, the iterative coefficients are marked with spatial grid numbers. Therefore, the coefficients can be calculated automatically according to the medium parameters of the spatial cells by indexing the grid numbers. Since the triangular matrix which is used to calculate the electric field is based on the iterative coefficients, the triangular matrix can also be updated automatically. In addition, a method to reduce the number of tridiagonal matrices is proposed in this work, which can effectively reduce the calculation memory and improve the calculation efficiency. In the proposed HIE-FDTD method, equivalent parameters are employed at the interfaces of different media and the convolution perfectly matched layer boundary condition is used to truncate the computational region. Based on the proposed HIE-FDTD method, a series of programs are implemented, which can simulate arbitrary electromagnetic targets with fine structure in one dimension in linear and non-dispersive space. A dielectric plate irradiated by planar wave and a dual-frequency microstrip inverted F antenna are simulated by using these programs. The numerical results are in good agreement with those from the traditional FDTD method and CST software, and the computational efficiency of the proposed HIE-FDTD method is greatly improved in comparison with that of the traditional FDTD method. This study provides a reliable simulation tool for the wide application of the HIE-FDTD method.
      通信作者: 陈娟, chen.juan.0201@mail.xjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0709800)和国家自然科学基金(批准号: 61971340)资助的课题.
      Corresponding author: Chen Juan, chen.juan.0201@mail.xjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFA0709800) and the National Natural Science Foundation of China (Grant No. 61971340).
    [1]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [2]

    Taflove A, Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd Ed.) (Norwood: Artech House) pp107–167

    [3]

    Kim Y H, Choi H, Cho J, Jung K Y 2020 J. Electr. Eng. Technol. 15 1281Google Scholar

    [4]

    Zhang Y X, Feng N X, Wang L X, Guan Z, Liu Q H 2020 IEEE Trans. Antennas Propag. 68 366Google Scholar

    [5]

    Li B H, Du Y P, Chen M L, Li Z 2021 IEEE Trans. Electromagn. Compat. 63 762Google Scholar

    [6]

    Kim Y J, Jung K Y 2021 IEEE Trans. Antennas Propag. 69 6600Google Scholar

    [7]

    杨利霞, 刘超, 李清亮, 闫玉波 2022 71 064101Google Scholar

    Yang L X, Liu C, Li Q L, Yan Y B 2022 Acta Phys. Sin. 71 064101Google Scholar

    [8]

    叶志红, 张杰, 周健健, 苟丹 2020 69 060701Google Scholar

    Ye Z H, Zhang J, Zhou J J, Gou D 2020 Acta Phys. Sin. 69 060701Google Scholar

    [9]

    方云 2020 博士学位论文 (西安: 西安理工大学)

    Fang Y 2020 Ph. D. Dissertation (Xi’an: Xi’an University of Technology) (in Chinese)

    [10]

    Huang B K, Wang G, Jiang Y S, Wang W B 2003 Microwave Opt. Technol. Lett. 39 97Google Scholar

    [11]

    Chen J, Wang J G 2006 Microwave Opt. Technol. Lett. 48 2291Google Scholar

    [12]

    Chen J, Wang J G 2007 Microwave Opt. Technol. Lett. 49 1001Google Scholar

    [13]

    Chen J, Xu N, Zhang A X, Guo J Y 2016 IEEE Trans. Antennas Propag. 64 3011Google Scholar

    [14]

    Zhai M L, Peng H L, Li D M, Wang D W, Xie H, Yin W Y 2017 Int. J. Numer. Modell. 30 e2250Google Scholar

    [15]

    Xu N, Chen J, Wang J G, Qin X J, Shi J P 2017 IET Microwaves Antennas Propag. 11 92Google Scholar

    [16]

    Chen J, Guo J Y, Tian C M 2018 IEEE Trans. Electromagn. Compat. 60 362Google Scholar

    [17]

    Zhang K L, Wang L, Wang M J, Zheng H X, Li E 2020 Int. J. RF Microwave Comput. Aided Eng. 30 e22151Google Scholar

    [18]

    Chen J, Wang J G 2007 IEEE Trans. Antennas Propag. 55 3603Google Scholar

    [19]

    Cui Y L, Chen B, Xiong R, Mao Y F 2013 J. Electromagn. Waves Appl. 27 529Google Scholar

    [20]

    Unno M, Asai H 2011 IEEE Microwave Wireless Compon. Lett. 21 453Google Scholar

    [21]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xian: Xidian University Press) pp9–27 (in Chinese) [葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第9–27页

    [22]

    Atef Z, Elsherbeni, Demir V 2015 The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations (2nd Ed.) (Scotland: SciTech Publishing) pp43–48

    [23]

    Chen J, Wang J G, Xu N 2016 Weakly Conditionally Stable Finite-Difference Time-Domain Method (Beijing: Science Press) pp63–69 (in Chinese) [陈娟, 王建国, 许宁 2016 弱条件稳定时域有限差分方法 (北京: 科学出版社) 第63—69页]

    [24]

    Chen J, Wang J G 2013 Appl. Comput. Electromagnet. 28 680

    [25]

    Roden J A, Gedney S D 2000 Microwave Opt. Technol. Lett. 27 334Google Scholar

    [26]

    王秀芝, 高劲松, 徐念喜 2013 62 237302Google Scholar

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302Google Scholar

  • 图 1  模型结构及网格分布

    Fig. 1.  Structure and grid distribution of the model.

    图 2  模型在x = 4截面的介质分布矩阵

    Fig. 2.  Media distribution matrix of x = 4.

    图 3  T1矩阵、T2矩阵和T矩阵结构图

    Fig. 3.  Structure of T1, T2 and T.

    图 4  介质板结构及尺寸

    Fig. 4.  Structure and dimensions of the dielectric plate.

    图 5  观察点处Ex的时域波形 (a) 观察点1; (b) 观察点2

    Fig. 5.  Time domain waveforms of Ex at the observation point: (a) Observation point one; (b) observation point two.

    图 6  双频微带倒F天线结构图

    Fig. 6.  Structure of the dual-frequency microstrip inverted-F antenna.

    图 7  倒F天线S11

    Fig. 7.  S11 of the inverted-F antenna.

    图 8  天线在2.43 GHz的辐射方向图 (a) XOY面; (b) XOZ

    Fig. 8.  Radiation patterns of the inverted-F antenna at 2.43 GHz: (a) XOY plane; (b) XOZ plane.

    图 9  天线在4.96 GHz的辐射方向图 (a) XOY面; (b) XOZ

    Fig. 9.  Radiation patterns of the inverted-F antenna at 4.96 GHz: (a) XOY plane; (b) XOZ plane.

    表 1  直接法和缩减法对比结果

    Table 1.  Comparison results of the direct method and the reduction method.

    计算方法直接法 缩减法
    1×15×510×10 1×15×510×10
    三对角矩阵数量6841110041760121212
    程序运行时间/s0.3584.781299.40.020.200.51
    程序所需内存/
    MB
    1.4024.1490.800.9815.7759.27
    下载: 导出CSV
    Baidu
  • [1]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [2]

    Taflove A, Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd Ed.) (Norwood: Artech House) pp107–167

    [3]

    Kim Y H, Choi H, Cho J, Jung K Y 2020 J. Electr. Eng. Technol. 15 1281Google Scholar

    [4]

    Zhang Y X, Feng N X, Wang L X, Guan Z, Liu Q H 2020 IEEE Trans. Antennas Propag. 68 366Google Scholar

    [5]

    Li B H, Du Y P, Chen M L, Li Z 2021 IEEE Trans. Electromagn. Compat. 63 762Google Scholar

    [6]

    Kim Y J, Jung K Y 2021 IEEE Trans. Antennas Propag. 69 6600Google Scholar

    [7]

    杨利霞, 刘超, 李清亮, 闫玉波 2022 71 064101Google Scholar

    Yang L X, Liu C, Li Q L, Yan Y B 2022 Acta Phys. Sin. 71 064101Google Scholar

    [8]

    叶志红, 张杰, 周健健, 苟丹 2020 69 060701Google Scholar

    Ye Z H, Zhang J, Zhou J J, Gou D 2020 Acta Phys. Sin. 69 060701Google Scholar

    [9]

    方云 2020 博士学位论文 (西安: 西安理工大学)

    Fang Y 2020 Ph. D. Dissertation (Xi’an: Xi’an University of Technology) (in Chinese)

    [10]

    Huang B K, Wang G, Jiang Y S, Wang W B 2003 Microwave Opt. Technol. Lett. 39 97Google Scholar

    [11]

    Chen J, Wang J G 2006 Microwave Opt. Technol. Lett. 48 2291Google Scholar

    [12]

    Chen J, Wang J G 2007 Microwave Opt. Technol. Lett. 49 1001Google Scholar

    [13]

    Chen J, Xu N, Zhang A X, Guo J Y 2016 IEEE Trans. Antennas Propag. 64 3011Google Scholar

    [14]

    Zhai M L, Peng H L, Li D M, Wang D W, Xie H, Yin W Y 2017 Int. J. Numer. Modell. 30 e2250Google Scholar

    [15]

    Xu N, Chen J, Wang J G, Qin X J, Shi J P 2017 IET Microwaves Antennas Propag. 11 92Google Scholar

    [16]

    Chen J, Guo J Y, Tian C M 2018 IEEE Trans. Electromagn. Compat. 60 362Google Scholar

    [17]

    Zhang K L, Wang L, Wang M J, Zheng H X, Li E 2020 Int. J. RF Microwave Comput. Aided Eng. 30 e22151Google Scholar

    [18]

    Chen J, Wang J G 2007 IEEE Trans. Antennas Propag. 55 3603Google Scholar

    [19]

    Cui Y L, Chen B, Xiong R, Mao Y F 2013 J. Electromagn. Waves Appl. 27 529Google Scholar

    [20]

    Unno M, Asai H 2011 IEEE Microwave Wireless Compon. Lett. 21 453Google Scholar

    [21]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xian: Xidian University Press) pp9–27 (in Chinese) [葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第9–27页

    [22]

    Atef Z, Elsherbeni, Demir V 2015 The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations (2nd Ed.) (Scotland: SciTech Publishing) pp43–48

    [23]

    Chen J, Wang J G, Xu N 2016 Weakly Conditionally Stable Finite-Difference Time-Domain Method (Beijing: Science Press) pp63–69 (in Chinese) [陈娟, 王建国, 许宁 2016 弱条件稳定时域有限差分方法 (北京: 科学出版社) 第63—69页]

    [24]

    Chen J, Wang J G 2013 Appl. Comput. Electromagnet. 28 680

    [25]

    Roden J A, Gedney S D 2000 Microwave Opt. Technol. Lett. 27 334Google Scholar

    [26]

    王秀芝, 高劲松, 徐念喜 2013 62 237302Google Scholar

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302Google Scholar

计量
  • 文章访问数:  4499
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 修回日期:  2022-05-30
  • 上网日期:  2022-09-08
  • 刊出日期:  2022-09-20

/

返回文章
返回
Baidu
map