搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

London磁场的物理机制研究

伍岳 肖立业

引用本文:
Citation:

London磁场的物理机制研究

伍岳, 肖立业

Physical mechanism of London moment

Wu Yue, Xiao Li-Ye
PDF
HTML
导出引用
  • 超导体在旋转过程中会在其内部产生磁场, 称为London磁场. 目前, 包括London理论和G-L理论在内的多种理论都对London磁场的产生机理进行了解释. 从本质上, 这些理论解释大多认为旋转超导体最外层超导电子运动滞后并由此出现净余电流, 而London磁场则是由旋转超导体表面的净余电流产生的. 然而, 关于旋转超导体最外层超导电子运动滞后的原因, 目前仍没有明确的理论解释. 本文通过对旋转系中带电粒子, 以及旋转超导体中超导电子的贝里相位进行了理论分析, 结果表明旋转状态下超导电子的贝里曲率与London磁场具有相同的表达形式, 表明London磁场可视为A-B效应的逆效应, 也即基于贝里相位的一种宏观量子效应.
    The superconductor will generate a magnetic field inside the superconductor during its rotation, which is called the London moment. At present, a variety of theories including London theory and G-L theory have explained the generation mechanism of London moment. Most of these theories essentially believe that the superconducting electrons in the surface layer of the rotating superconductor lag behind and have a net residual current. The London moment is produced by the net residual current on the surface of the rotating superconductor. However, there is still no clear theoretical explanation for the motion lag of the outermost superconducting electrons in rotating superconductors. In this paper the charged particles in the rotating system and the Berry phase of the superconductor in the rotating superconductor are analyzed. The results show that the Berry curvature of the superconductor has the same expression form as the London moment, indicating that the London moment may be the inverse effect of A-B effect, which is a macroscopic quantum effect based on Berry phase.
      通信作者: 肖立业, xiao@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金创新研究群体科学基金(批准号: 51721005)和中国科学院电工研究所科研基金(批准号: 2021000038)资助的课题
      Corresponding author: Xiao Li-Ye, xiao@mail.iee.ac.cn
    • Funds: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51721005), and The Institute of Electrical Engineering, CAS(Grant No. 2021000038).
    [1]

    Kammerligh Onnes H 1911 Leiden. Commun. 122 122

    [2]

    Meissner W, Ochsenfel R 1933 Sci. Nat. 21 44Google Scholar

    [3]

    Johephson B D 1962 Phys. Lett. 1 251Google Scholar

    [4]

    林良真 1994 电工电能新技术 3 25

    Lin L Z 1994 Adv. Technol. Electr. Eng. Energy 3 25

    [5]

    Vodel W, Makiniemi K. 1992 Meas. Sci. Technol. 3 12

    [6]

    Welty R P, Martinis J M 1991 IEEE. Trans. Magn. 27 2

    [7]

    Becker R, Heller G, Sauter F 1933 Kugel Z. Phys. 85 772Google Scholar

    [8]

    London F 1960 Superfluids 1 78

    [9]

    Rystephanick R G 1976 Am. J. Phys. 44 647Google Scholar

    [10]

    Capellmann H 2002 Eur. Phys. J. B 25 25

    [11]

    欧阳世根, 关毅, 佘卫龙 2002 51 1596Google Scholar

    Ouyang S G, Guan Y, She W L 2002 Acta Phys. Sin. 51 1596Google Scholar

    [12]

    Lipavsky P, Bok J, Kolacek J 2013 Physica C 492 144Google Scholar

    [13]

    Hirsch J E 2019 Ann. Phys. 531 10

    [14]

    Hirsch J E 2019 Phys. Lett. A 383 1Google Scholar

    [15]

    Hirsch J E 2014 Phys. Scr. 89 015806Google Scholar

    [16]

    Hirsch J E 2007 Phys. Lett. A 366 615Google Scholar

    [17]

    Tajmar M, de Matos C J 2003 Physica C 385 551Google Scholar

    [18]

    Tajmar M, de Matos C J 2005 Physica C 420 1Google Scholar

    [19]

    Tajmar M, De Matos C J 2001 J. Theor. 3 1

    [20]

    Ross D K 1983 J. Phys. A:Math. Theor. 16 1331

    [21]

    Hildebrandt AF 1964 Phys. Rev. Lett. 12 8

    [22]

    Brickman N F 1969 Phys. Rev. 184 2

    [23]

    Verheijen A A 1990 Physica B 165 6

    [24]

    Sanzari M A, Cui H L, Karwacki F 1996 Appl. Phys. Lett. 68 3802Google Scholar

    [25]

    谢晓明, 孙越 2008 稀有金属材料与工程 37 420

    Xie X M, Sun Y 2008 Rare. Met. Mater. Eng. 37 420

    [26]

    Jachmann F, Hucho C 2007 Solid. State. Commun. 142 212Google Scholar

    [27]

    Fil V D, Fil D V, Zholobenko A N, Burma N G, Avramenko Y A, Kim J D, Choi S M, Lee S I 2006 Europhys. Lett. 76 3

    [28]

    Gawlinski E T 1993 Phys. Rev. B 48 351Google Scholar

    [29]

    Liu M 1998 Phys. Rev. Lett. 81 15

    [30]

    Tate J, Cabrera B, Felch S B, Anderson J T 1989 Phys. Rev. Lett. 62 845Google Scholar

    [31]

    Hipkins D, Felson W, Xiao Y M 1996 Czech. J. Phys. 46 2871Google Scholar

    [32]

    Hoang L P, Le D N, Pham D A, Nguyen T K C, Nguyen T m A, Ngo X C, Hoang T D, Nguyen T B and Cao B X 2019 Mater. Lett. 262 127176

    [33]

    Cabrera B, Gutfreund H, Little W A 1982 Phys. Rev. B 25 11

    [34]

    Berry M V 1984 Proc. R. Soc. London, Ser. A. 391 45

    [35]

    P. G. 德热纳 2013 金属与合金的超导电性 (北京: 高等教育出版社) 第107页

    De Gennes P G 2013 Superconductivity of Metals and Alloys (Beijing: Higher Education Press) p107 (in Chinese)

    [36]

    Koizumi H 2021 J. Supercond. Nov. Magn. 34 5

  • 图 1  旋转超导体示意图

    Fig. 1.  Schematic diagram of rotating superconductor.

    图 2  常规导体与超导体旋转过程中内部电子贝里相位变化示意图. 图中常规导体与超导体内部的半圆形箭头表示旋转过程中电子产生的贝里相位

    Fig. 2.  Schematic diagram of the Berry phase during the rotation of conventional conductors and superconductors. The semicircular arrows inside the conventional conductor and superconductor in the figure represent the Berry phase of electronics.

    Baidu
  • [1]

    Kammerligh Onnes H 1911 Leiden. Commun. 122 122

    [2]

    Meissner W, Ochsenfel R 1933 Sci. Nat. 21 44Google Scholar

    [3]

    Johephson B D 1962 Phys. Lett. 1 251Google Scholar

    [4]

    林良真 1994 电工电能新技术 3 25

    Lin L Z 1994 Adv. Technol. Electr. Eng. Energy 3 25

    [5]

    Vodel W, Makiniemi K. 1992 Meas. Sci. Technol. 3 12

    [6]

    Welty R P, Martinis J M 1991 IEEE. Trans. Magn. 27 2

    [7]

    Becker R, Heller G, Sauter F 1933 Kugel Z. Phys. 85 772Google Scholar

    [8]

    London F 1960 Superfluids 1 78

    [9]

    Rystephanick R G 1976 Am. J. Phys. 44 647Google Scholar

    [10]

    Capellmann H 2002 Eur. Phys. J. B 25 25

    [11]

    欧阳世根, 关毅, 佘卫龙 2002 51 1596Google Scholar

    Ouyang S G, Guan Y, She W L 2002 Acta Phys. Sin. 51 1596Google Scholar

    [12]

    Lipavsky P, Bok J, Kolacek J 2013 Physica C 492 144Google Scholar

    [13]

    Hirsch J E 2019 Ann. Phys. 531 10

    [14]

    Hirsch J E 2019 Phys. Lett. A 383 1Google Scholar

    [15]

    Hirsch J E 2014 Phys. Scr. 89 015806Google Scholar

    [16]

    Hirsch J E 2007 Phys. Lett. A 366 615Google Scholar

    [17]

    Tajmar M, de Matos C J 2003 Physica C 385 551Google Scholar

    [18]

    Tajmar M, de Matos C J 2005 Physica C 420 1Google Scholar

    [19]

    Tajmar M, De Matos C J 2001 J. Theor. 3 1

    [20]

    Ross D K 1983 J. Phys. A:Math. Theor. 16 1331

    [21]

    Hildebrandt AF 1964 Phys. Rev. Lett. 12 8

    [22]

    Brickman N F 1969 Phys. Rev. 184 2

    [23]

    Verheijen A A 1990 Physica B 165 6

    [24]

    Sanzari M A, Cui H L, Karwacki F 1996 Appl. Phys. Lett. 68 3802Google Scholar

    [25]

    谢晓明, 孙越 2008 稀有金属材料与工程 37 420

    Xie X M, Sun Y 2008 Rare. Met. Mater. Eng. 37 420

    [26]

    Jachmann F, Hucho C 2007 Solid. State. Commun. 142 212Google Scholar

    [27]

    Fil V D, Fil D V, Zholobenko A N, Burma N G, Avramenko Y A, Kim J D, Choi S M, Lee S I 2006 Europhys. Lett. 76 3

    [28]

    Gawlinski E T 1993 Phys. Rev. B 48 351Google Scholar

    [29]

    Liu M 1998 Phys. Rev. Lett. 81 15

    [30]

    Tate J, Cabrera B, Felch S B, Anderson J T 1989 Phys. Rev. Lett. 62 845Google Scholar

    [31]

    Hipkins D, Felson W, Xiao Y M 1996 Czech. J. Phys. 46 2871Google Scholar

    [32]

    Hoang L P, Le D N, Pham D A, Nguyen T K C, Nguyen T m A, Ngo X C, Hoang T D, Nguyen T B and Cao B X 2019 Mater. Lett. 262 127176

    [33]

    Cabrera B, Gutfreund H, Little W A 1982 Phys. Rev. B 25 11

    [34]

    Berry M V 1984 Proc. R. Soc. London, Ser. A. 391 45

    [35]

    P. G. 德热纳 2013 金属与合金的超导电性 (北京: 高等教育出版社) 第107页

    De Gennes P G 2013 Superconductivity of Metals and Alloys (Beijing: Higher Education Press) p107 (in Chinese)

    [36]

    Koizumi H 2021 J. Supercond. Nov. Magn. 34 5

  • [1] 郭静, 吴奇, 孙力玲. 抵御大变形超导体的发现.  , 2023, 72(23): 237401. doi: 10.7498/aps.72.20231341
    [2] 奉熙林, 蒋坤, 胡江平. 钒基笼目超导体.  , 2022, 71(11): 118103. doi: 10.7498/aps.71.20220891
    [3] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质.  , 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [4] 张艳艳, 陈家麟, 查国桥, 周世平. 多带超导体中的自发磁场和奇频配对态.  , 2019, 68(16): 167401. doi: 10.7498/aps.68.20190445
    [5] 刘敏霞, 何林, 张耿, 叶海, 黄晓园, 徐永钊. 两带超导体LaNiC2上临界磁场的理论分析.  , 2016, 65(3): 037401. doi: 10.7498/aps.65.037401
    [6] 李斌, 邢钟文, 刘楣. LiFeAs超导体中磁性与声子软化.  , 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [7] 刘敏霞. 用两带Ginzburg-Landau理论分析两带超导体Lu2Fe3Si5的表面临界磁场.  , 2011, 60(1): 017401. doi: 10.7498/aps.60.017401
    [8] 李晓薇. 超导体/铁磁体绝缘层-超导体隧道结的直流Josephson效应.  , 2002, 51(8): 1821-1825. doi: 10.7498/aps.51.1821
    [9] 王瑞峰, 赵士平, 徐凤枝, 陈赓华, 杨乾声. 超导体磁场穿透深度测量中的数据分析问题.  , 2002, 51(4): 889-893. doi: 10.7498/aps.51.889
    [10] 欧阳世根, 关毅, 佘卫龙. 旋转超导体中的电流与电磁场.  , 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
    [11] 王勇刚, 逄焕刚, 刘楣. 高温超导体的电子比热研究.  , 2000, 49(3): 548-552. doi: 10.7498/aps.49.548
    [12] 王金星, 杨仕钟, 何砚发, 杨超伟, 段镇忠, 冯 勇, 张平祥, 周 廉. 在工频外磁场下高温超导体的交流损耗.  , 1999, 48(1): 148-153. doi: 10.7498/aps.48.148
    [13] 蔡学榆, 尹道乐. 多层膜超导体的邻近效应.  , 1981, 30(5): 700-704. doi: 10.7498/aps.30.700
    [14] 张裕恒, 曹效文. A型和B型超导体的临界场.  , 1980, 29(1): 127-130. doi: 10.7498/aps.29.127
    [15] 赵忠贤, 刘福绥, 韩汝珊. 复合颗粒超导体的壳层模型.  , 1979, 28(2): 222-228. doi: 10.7498/aps.28.222
    [16] 刘福绥. 两种类型超导体的能隙.  , 1978, 27(6): 758-760. doi: 10.7498/aps.27.758
    [17] 吴杭生. A型和B型超导体.  , 1978, 27(6): 756-757. doi: 10.7498/aps.27.756
    [18] 龚昌德, 蔡建华. 含磁性杂质超导体的热导率.  , 1966, 22(3): 381-384. doi: 10.7498/aps.22.381
    [19] 雷啸霖. 磁场中的超导膜.  , 1965, 21(9): 1619-1637. doi: 10.7498/aps.21.1619
    [20] 李宏成. 第二类超导体的临界磁场.  , 1965, 21(3): 560-568. doi: 10.7498/aps.21.560
计量
  • 文章访问数:  3805
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 修回日期:  2022-02-08
  • 上网日期:  2022-06-19
  • 刊出日期:  2022-07-05

/

返回文章
返回
Baidu
map