-
超导体在旋转过程中会在其内部产生磁场, 称为London磁场. 目前, 包括London理论和G-L理论在内的多种理论都对London磁场的产生机理进行了解释. 从本质上, 这些理论解释大多认为旋转超导体最外层超导电子运动滞后并由此出现净余电流, 而London磁场则是由旋转超导体表面的净余电流产生的. 然而, 关于旋转超导体最外层超导电子运动滞后的原因, 目前仍没有明确的理论解释. 本文通过对旋转系中带电粒子, 以及旋转超导体中超导电子的贝里相位进行了理论分析, 结果表明旋转状态下超导电子的贝里曲率与London磁场具有相同的表达形式, 表明London磁场可视为A-B效应的逆效应, 也即基于贝里相位的一种宏观量子效应.The superconductor will generate a magnetic field inside the superconductor during its rotation, which is called the London moment. At present, a variety of theories including London theory and G-L theory have explained the generation mechanism of London moment. Most of these theories essentially believe that the superconducting electrons in the surface layer of the rotating superconductor lag behind and have a net residual current. The London moment is produced by the net residual current on the surface of the rotating superconductor. However, there is still no clear theoretical explanation for the motion lag of the outermost superconducting electrons in rotating superconductors. In this paper the charged particles in the rotating system and the Berry phase of the superconductor in the rotating superconductor are analyzed. The results show that the Berry curvature of the superconductor has the same expression form as the London moment, indicating that the London moment may be the inverse effect of A-B effect, which is a macroscopic quantum effect based on Berry phase.
-
Keywords:
- rotating superconductor /
- London moment /
- Berry phase
[1] Kammerligh Onnes H 1911 Leiden. Commun. 122 122
[2] Meissner W, Ochsenfel R 1933 Sci. Nat. 21 44
Google Scholar
[3] Johephson B D 1962 Phys. Lett. 1 251
Google Scholar
[4] 林良真 1994 电工电能新技术 3 25
Lin L Z 1994 Adv. Technol. Electr. Eng. Energy 3 25
[5] Vodel W, Makiniemi K. 1992 Meas. Sci. Technol. 3 12
[6] Welty R P, Martinis J M 1991 IEEE. Trans. Magn. 27 2
[7] Becker R, Heller G, Sauter F 1933 Kugel Z. Phys. 85 772
Google Scholar
[8] London F 1960 Superfluids 1 78
[9] Rystephanick R G 1976 Am. J. Phys. 44 647
Google Scholar
[10] Capellmann H 2002 Eur. Phys. J. B 25 25
[11] 欧阳世根, 关毅, 佘卫龙 2002 51 1596
Google Scholar
Ouyang S G, Guan Y, She W L 2002 Acta Phys. Sin. 51 1596
Google Scholar
[12] Lipavsky P, Bok J, Kolacek J 2013 Physica C 492 144
Google Scholar
[13] Hirsch J E 2019 Ann. Phys. 531 10
[14] Hirsch J E 2019 Phys. Lett. A 383 1
Google Scholar
[15] Hirsch J E 2014 Phys. Scr. 89 015806
Google Scholar
[16] Hirsch J E 2007 Phys. Lett. A 366 615
Google Scholar
[17] Tajmar M, de Matos C J 2003 Physica C 385 551
Google Scholar
[18] Tajmar M, de Matos C J 2005 Physica C 420 1
Google Scholar
[19] Tajmar M, De Matos C J 2001 J. Theor. 3 1
[20] Ross D K 1983 J. Phys. A:Math. Theor. 16 1331
[21] Hildebrandt AF 1964 Phys. Rev. Lett. 12 8
[22] Brickman N F 1969 Phys. Rev. 184 2
[23] Verheijen A A 1990 Physica B 165 6
[24] Sanzari M A, Cui H L, Karwacki F 1996 Appl. Phys. Lett. 68 3802
Google Scholar
[25] 谢晓明, 孙越 2008 稀有金属材料与工程 37 420
Xie X M, Sun Y 2008 Rare. Met. Mater. Eng. 37 420
[26] Jachmann F, Hucho C 2007 Solid. State. Commun. 142 212
Google Scholar
[27] Fil V D, Fil D V, Zholobenko A N, Burma N G, Avramenko Y A, Kim J D, Choi S M, Lee S I 2006 Europhys. Lett. 76 3
[28] Gawlinski E T 1993 Phys. Rev. B 48 351
Google Scholar
[29] Liu M 1998 Phys. Rev. Lett. 81 15
[30] Tate J, Cabrera B, Felch S B, Anderson J T 1989 Phys. Rev. Lett. 62 845
Google Scholar
[31] Hipkins D, Felson W, Xiao Y M 1996 Czech. J. Phys. 46 2871
Google Scholar
[32] Hoang L P, Le D N, Pham D A, Nguyen T K C, Nguyen T m A, Ngo X C, Hoang T D, Nguyen T B and Cao B X 2019 Mater. Lett. 262 127176
[33] Cabrera B, Gutfreund H, Little W A 1982 Phys. Rev. B 25 11
[34] Berry M V 1984 Proc. R. Soc. London, Ser. A. 391 45
[35] P. G. 德热纳 2013 金属与合金的超导电性 (北京: 高等教育出版社) 第107页
De Gennes P G 2013 Superconductivity of Metals and Alloys (Beijing: Higher Education Press) p107 (in Chinese)
[36] Koizumi H 2021 J. Supercond. Nov. Magn. 34 5
-
图 2 常规导体与超导体旋转过程中内部电子贝里相位变化示意图. 图中常规导体与超导体内部的半圆形箭头表示旋转过程中电子产生的贝里相位
Fig. 2. Schematic diagram of the Berry phase during the rotation of conventional conductors and superconductors. The semicircular arrows inside the conventional conductor and superconductor in the figure represent the Berry phase of electronics.
-
[1] Kammerligh Onnes H 1911 Leiden. Commun. 122 122
[2] Meissner W, Ochsenfel R 1933 Sci. Nat. 21 44
Google Scholar
[3] Johephson B D 1962 Phys. Lett. 1 251
Google Scholar
[4] 林良真 1994 电工电能新技术 3 25
Lin L Z 1994 Adv. Technol. Electr. Eng. Energy 3 25
[5] Vodel W, Makiniemi K. 1992 Meas. Sci. Technol. 3 12
[6] Welty R P, Martinis J M 1991 IEEE. Trans. Magn. 27 2
[7] Becker R, Heller G, Sauter F 1933 Kugel Z. Phys. 85 772
Google Scholar
[8] London F 1960 Superfluids 1 78
[9] Rystephanick R G 1976 Am. J. Phys. 44 647
Google Scholar
[10] Capellmann H 2002 Eur. Phys. J. B 25 25
[11] 欧阳世根, 关毅, 佘卫龙 2002 51 1596
Google Scholar
Ouyang S G, Guan Y, She W L 2002 Acta Phys. Sin. 51 1596
Google Scholar
[12] Lipavsky P, Bok J, Kolacek J 2013 Physica C 492 144
Google Scholar
[13] Hirsch J E 2019 Ann. Phys. 531 10
[14] Hirsch J E 2019 Phys. Lett. A 383 1
Google Scholar
[15] Hirsch J E 2014 Phys. Scr. 89 015806
Google Scholar
[16] Hirsch J E 2007 Phys. Lett. A 366 615
Google Scholar
[17] Tajmar M, de Matos C J 2003 Physica C 385 551
Google Scholar
[18] Tajmar M, de Matos C J 2005 Physica C 420 1
Google Scholar
[19] Tajmar M, De Matos C J 2001 J. Theor. 3 1
[20] Ross D K 1983 J. Phys. A:Math. Theor. 16 1331
[21] Hildebrandt AF 1964 Phys. Rev. Lett. 12 8
[22] Brickman N F 1969 Phys. Rev. 184 2
[23] Verheijen A A 1990 Physica B 165 6
[24] Sanzari M A, Cui H L, Karwacki F 1996 Appl. Phys. Lett. 68 3802
Google Scholar
[25] 谢晓明, 孙越 2008 稀有金属材料与工程 37 420
Xie X M, Sun Y 2008 Rare. Met. Mater. Eng. 37 420
[26] Jachmann F, Hucho C 2007 Solid. State. Commun. 142 212
Google Scholar
[27] Fil V D, Fil D V, Zholobenko A N, Burma N G, Avramenko Y A, Kim J D, Choi S M, Lee S I 2006 Europhys. Lett. 76 3
[28] Gawlinski E T 1993 Phys. Rev. B 48 351
Google Scholar
[29] Liu M 1998 Phys. Rev. Lett. 81 15
[30] Tate J, Cabrera B, Felch S B, Anderson J T 1989 Phys. Rev. Lett. 62 845
Google Scholar
[31] Hipkins D, Felson W, Xiao Y M 1996 Czech. J. Phys. 46 2871
Google Scholar
[32] Hoang L P, Le D N, Pham D A, Nguyen T K C, Nguyen T m A, Ngo X C, Hoang T D, Nguyen T B and Cao B X 2019 Mater. Lett. 262 127176
[33] Cabrera B, Gutfreund H, Little W A 1982 Phys. Rev. B 25 11
[34] Berry M V 1984 Proc. R. Soc. London, Ser. A. 391 45
[35] P. G. 德热纳 2013 金属与合金的超导电性 (北京: 高等教育出版社) 第107页
De Gennes P G 2013 Superconductivity of Metals and Alloys (Beijing: Higher Education Press) p107 (in Chinese)
[36] Koizumi H 2021 J. Supercond. Nov. Magn. 34 5
计量
- 文章访问数: 4390
- PDF下载量: 71
- 被引次数: 0