-
单模光纤自适应耦合装置能够将空间激光高效、稳定的耦合至单模光纤中, 在自由空间光通信领域具有重要的研究意义. 然而, 在长距离、强大气湍流环境下的空间光通信系统中, 装置闭环性能会受到光电探测噪声的严重干扰. 本文针对该问题开展了深入研究, 分析了光电探测噪声的作用机理, 建立了噪声干扰程度评价指标, 同时结合实际的单模光纤自适应耦合装置开展了相应的数值仿真研究. 仿真结果表明, 光电探测噪声会对光纤耦合过程中的闭环平均耦合效率、闭环精度、以及闭环带宽产生严重影响. 根据仿真结果, 本文给出了相应的经验公式, 能够用以计算强噪声干扰环境下光纤耦合过程应满足的光学及电学参数. 本文的理论及仿真结果能够为长距离、强大气湍流环境下的单模光纤自适应耦合装置的设计提供相应的理论依据.
-
关键词:
- 自由空间光通信 /
- 单模光纤自适应耦合装置 /
- 随机并行梯度下降算法 /
- 光电探测噪声
The single-mode fiber (SMF) adaptive coupling device can efficiently and stably couple the space laser into SMF, which plays an important role in the fiber-based free space optical communication (FSOC) technology. Therefore, a novel corrector named adaptive fiber coupler (AFC) is developed and successfully used in the adaptive SMF coupling applications. However, in the FSOC system under long-range turbulent atmosphere, the closed loop performance of AFC will be seriously disturbed by the photoelectric conversion noise. This problem is studied in depth in this paper. The operational principle of the photoelectric conversion noise is analyzed, and the corresponding evaluation index isgiven. Furthermore, The numerical simulation experiments are conducted to study the specific influence of the photoelectric conversion noise. The results show that the averaged closed-loop coupling efficiency, control accuracy, and control bandwidth of AFC are seriously affected. According to the results, the empirical formula is given. This formula can be used to calculate the optical and electrical parameters that the AFC device should meet under the condition of strong noise interference. The theoretical and simulation results in this paper can provide a theoretical basis for designing the AFC device under long-range turbulent atmosphere.-
Keywords:
- free space optical communication /
- adaptive SMF coupling device /
- stochastic parallel gradient descent algorithm /
- photoelectric conversion noise
[1] Hemmati H 2006 Deep Space Optical Communications (Hoboken: John Wiley & Sons Press) pp1–5
[2] Toyoshima M, Leeb W R, Kunimori H, Takano T 2007 Opt. Eng. 46 015003Google Scholar
[3] 姜会林, 佟首峰 2010 空间激光通信技术与系统(北京: 国防工业出版社) 第1−21页
Jiang H L, Tong S F 2010 The Technologies and Systems of Space Laser Communication (Beijing: National Defense Industry Press) pp1−21 (in Chinese)
[4] 赵尚弘, 吴继礼, 李勇军, 王翔, 马丽华, 韩仲祥 2011 激光与光电子学进展 48 28
Zhao S H, Wu J L, Li Y J, Wang X, Ma L H, Han Z X 2011 Laser Optoelectron. Prog. 48 28
[5] Mai V V, Kim H 2019 IEEE P. J. 11 7902213
[6] Zhao X Q, Hou X, Zhu F A, Li T, Sun J F, Zhu R, Gao M, Yang Y, Chen W B 2019 Opt. Express 27 23996Google Scholar
[7] HuQ, Zhen LL, Mao Y, Zhu S W, Zhou X, Zhou G Z 2020 Opt. Express 28 13141Google Scholar
[8] Dikmelik Y, Davidson F M 2005 App. Opt. 44 4946Google Scholar
[9] Toyoshima M 2006 J. Opt. Soc. Am. A. 23 2246Google Scholar
[10] Ma J, Zhao F, Tan L Y, Yu S Y, Han Q Q 2009 App. Opt. 48 5184Google Scholar
[11] Carhart G W, Vorontsov M A, Beresnev L A, et al. 2005 Proceedings of SPIE-Free-Space Laser Communications V Bellingham, USA, September 12, 2005 p589211
[12] Vorontsov M A 2005 Proceedings of SPIE-Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II Bellingham, USA, August 23, 2005 p589501
[13] Beresnev L A, Vorontsov M A 2005 Proceedings of SPIE - Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II Bellingham, USA, August 23 2005 p58950 R
[14] Weyrauch T, Vorontsov M A, Carhart G W, Simonova G V, Beresnev L A, PolnauE E 2007 Proceedings of SPIE-Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation San Diego, CA, September 25, 2007 p67080 R
[15] 耿超, 罗文, 谭毅, 刘红梅, 牟进博, 李新阳 2013 62 224202Google Scholar
Geng C, Luo W, Tan Y, Liu H M, Mo J B, Li X Y 2013 Acta Phys. Sin. 62 224202Google Scholar
[16] 耿超, 张小军, 李新阳, 饶长辉 2011 红外与激光工程 40 1682Google Scholar
Geng C, Zhang X J, Li X Y, Rao C H 2011 Infrar. Laser Eng. 40 1682Google Scholar
[17] 耿超, 李新阳, 张小军, 饶长辉 2012 61 034204Google Scholar
Geng C, Li X Y, Zhang X J, Rao C H 2012 Acta Phys. Sin. 61 034204Google Scholar
[18] 罗文, 耿超, 李新阳 2014 光学学报 34 0606001
Luo W, Geng C, Li X Y 2014 Acta Opt. Sin. 34 0606001
[19] Luo W, Geng C, Wu Y Y, Tan Y, Luo Q, Liu H M, Li X Y 2014 Chin. Phys. B 23 014207Google Scholar
[20] Huang G, Geng C, Li F, Yang Y, Li X Y 2018 IEEE P. J. 10 7904212
[21] 芮道满, 刘超, 陈莫, 鲜浩 2018 光电工程 45 170647
Rui D M, Liu C, Chen M, Xian H 2018 Opto-Electronic Eng. 45 170647
[22] Geng C, Li F, Zuo J, Liu J Y, Yang X, Yu T, Jiang J L, Li X Y 2020 Opt. Lett. 45 1906Google Scholar
[23] Chen M, Liu C, Rui D M, Xian H 2019 Opt. Comm. 430 223Google Scholar
[24] 铙瑞中 2005 光在湍流大气中的传播 (合肥: 安徽科学技术出版社) 第164页
Rao R Z 2005 Light Propagation in the Turbulent Atmosphere (Hefei: Anhui Science & Technology Press) p164 (in Chinese)
[25] 凡木文, 黄林海, 李梅, 饶长辉 2016 65 024209Google Scholar
Fan M W, Huang L H, Li M, Rao C H 2016 Acta Phys. Sin. 65 024209Google Scholar
-
-
[1] Hemmati H 2006 Deep Space Optical Communications (Hoboken: John Wiley & Sons Press) pp1–5
[2] Toyoshima M, Leeb W R, Kunimori H, Takano T 2007 Opt. Eng. 46 015003Google Scholar
[3] 姜会林, 佟首峰 2010 空间激光通信技术与系统(北京: 国防工业出版社) 第1−21页
Jiang H L, Tong S F 2010 The Technologies and Systems of Space Laser Communication (Beijing: National Defense Industry Press) pp1−21 (in Chinese)
[4] 赵尚弘, 吴继礼, 李勇军, 王翔, 马丽华, 韩仲祥 2011 激光与光电子学进展 48 28
Zhao S H, Wu J L, Li Y J, Wang X, Ma L H, Han Z X 2011 Laser Optoelectron. Prog. 48 28
[5] Mai V V, Kim H 2019 IEEE P. J. 11 7902213
[6] Zhao X Q, Hou X, Zhu F A, Li T, Sun J F, Zhu R, Gao M, Yang Y, Chen W B 2019 Opt. Express 27 23996Google Scholar
[7] HuQ, Zhen LL, Mao Y, Zhu S W, Zhou X, Zhou G Z 2020 Opt. Express 28 13141Google Scholar
[8] Dikmelik Y, Davidson F M 2005 App. Opt. 44 4946Google Scholar
[9] Toyoshima M 2006 J. Opt. Soc. Am. A. 23 2246Google Scholar
[10] Ma J, Zhao F, Tan L Y, Yu S Y, Han Q Q 2009 App. Opt. 48 5184Google Scholar
[11] Carhart G W, Vorontsov M A, Beresnev L A, et al. 2005 Proceedings of SPIE-Free-Space Laser Communications V Bellingham, USA, September 12, 2005 p589211
[12] Vorontsov M A 2005 Proceedings of SPIE-Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II Bellingham, USA, August 23, 2005 p589501
[13] Beresnev L A, Vorontsov M A 2005 Proceedings of SPIE - Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II Bellingham, USA, August 23 2005 p58950 R
[14] Weyrauch T, Vorontsov M A, Carhart G W, Simonova G V, Beresnev L A, PolnauE E 2007 Proceedings of SPIE-Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation San Diego, CA, September 25, 2007 p67080 R
[15] 耿超, 罗文, 谭毅, 刘红梅, 牟进博, 李新阳 2013 62 224202Google Scholar
Geng C, Luo W, Tan Y, Liu H M, Mo J B, Li X Y 2013 Acta Phys. Sin. 62 224202Google Scholar
[16] 耿超, 张小军, 李新阳, 饶长辉 2011 红外与激光工程 40 1682Google Scholar
Geng C, Zhang X J, Li X Y, Rao C H 2011 Infrar. Laser Eng. 40 1682Google Scholar
[17] 耿超, 李新阳, 张小军, 饶长辉 2012 61 034204Google Scholar
Geng C, Li X Y, Zhang X J, Rao C H 2012 Acta Phys. Sin. 61 034204Google Scholar
[18] 罗文, 耿超, 李新阳 2014 光学学报 34 0606001
Luo W, Geng C, Li X Y 2014 Acta Opt. Sin. 34 0606001
[19] Luo W, Geng C, Wu Y Y, Tan Y, Luo Q, Liu H M, Li X Y 2014 Chin. Phys. B 23 014207Google Scholar
[20] Huang G, Geng C, Li F, Yang Y, Li X Y 2018 IEEE P. J. 10 7904212
[21] 芮道满, 刘超, 陈莫, 鲜浩 2018 光电工程 45 170647
Rui D M, Liu C, Chen M, Xian H 2018 Opto-Electronic Eng. 45 170647
[22] Geng C, Li F, Zuo J, Liu J Y, Yang X, Yu T, Jiang J L, Li X Y 2020 Opt. Lett. 45 1906Google Scholar
[23] Chen M, Liu C, Rui D M, Xian H 2019 Opt. Comm. 430 223Google Scholar
[24] 铙瑞中 2005 光在湍流大气中的传播 (合肥: 安徽科学技术出版社) 第164页
Rao R Z 2005 Light Propagation in the Turbulent Atmosphere (Hefei: Anhui Science & Technology Press) p164 (in Chinese)
[25] 凡木文, 黄林海, 李梅, 饶长辉 2016 65 024209Google Scholar
Fan M W, Huang L H, Li M, Rao C H 2016 Acta Phys. Sin. 65 024209Google Scholar
计量
- 文章访问数: 3905
- PDF下载量: 55
- 被引次数: 0