-
Radiative shock is an important phenomenon both in astrophysics and in inertial confinement fusion. In this paper, the radiation properties of X-ray heated radiatve shock in xenon is studied with the simulation method. The radiative shock is described by a one-dimensional, multi-group radiation hydrodynamics model proposed by Zinn [Zinn J 1973 J. Comput. Phys. 13 569]. To conduct computation, the opacity and equation-of-state data of xenon are calculated and put into the model. The reliabilities of the model and the physical parameters of xenon are verified by comparing the temperature and velocity of the radiative shock calculated by the model with those measured experimentally. The evolution of the radiative shock involves abundant physical processes. The core of the xenon can be heated up to 100 eV, resulting in a thermal wave and forming an expanding high-temperature-core. Shortly, the hydrodynamic disturbances reach the thermal wave front, generating a shock. As the thermal wave slows down, the shock gradually exceeds the high-temperature-core, forming a double-step distribution in the temperature profile. The time evolution of the effective temperature of the radiative shock shows two maximum values and one minimum value, and the radiation spectra often deviate from blackbody spectrum. By analyzing the radiation and absorption properties at different positions of the shock, it can be found that the optical property of the shock is highly dynamic and can generate the above-mentioned radiation characteristics. When the radiative shock is just formed, the radiation comes from the shock surface and the shock precursor has a significant absorption of the radiation. As the shock temperature falls during expansion, the shock precursor disappears and the radiation inside the shock can come out owing to absorption coefficient decreases. When the shock becomes transparent, the radiation surface reaches the outside edge of the high-temperature-core. Then, the temperature of the high-temperature-core decreases further, making this region also optically thin, and the radiation from the inner region can come out. Finally, the radiation strength falls because of temperature decreasing. -
Keywords:
- radiative shock /
- radiation spectrum /
- xenon /
- radiation hydrodynamics
[1] Ensman L, Burrows A 1992 Astrophys. J. 393 742Google Scholar
[2] DE Young D S 1991 Science 252 389Google Scholar
[3] Chakrabarti S K, Titarchuk L G 1995 Astrophys. J. 455 623Google Scholar
[4] Pak A, Divol L, Gregori G, Weber S, Atherton J, Bennedetti R, Bradley D K, Callahan D, Casey D T, Dewald E, Döppner T, Edwards M J, Frenje J A, Glenn S, Grim G P, Hicks D, Hsing W W, Izumi N, Jones O S, Johnson M G, Khan S F, Kilkenny J D, Kline J L, Kyrala G A, Lindl J, Landen O L, Le Pape S, Ma T, MacPhee A, MacGowan B J, MacKinnon A J, Masse L, Meezan N B, Moody J D, Olson R E, Ralph J E, Robey H F, Park H S, Remington B A, Ross J S, Tommasini R, Town R P J, Smalyuk V, Glenzer S H, Moses E I 2013 Phys. Plasmas 20 056315Google Scholar
[5] 江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚 2004 53 3424
Jiang S E, Li W H, Sun K X, Jiang X H, Liu Y G, Gui Y L, Chen J S, Ding Y K, Zheng Z J 2004 Acta Phys. Sin. 53 3424
[6] Kuranz C C, Park H S, Remington B A, Drake R P, Miles A R, Robey H F, Kilkenny J D, Keane C J, Kalantar D H, Huntington C M, Krauland C M, Harding E C, Grosskopf M J, Marion D C, Doss F W, Myra E, Maddox B, Young B, Kline J L, Kyrala G, Plewa T, Wheeler J C, Arnett W D, Wallace R J, Giraldez E, Nikroo A 2011 Astrophys. Space Sci. 336 207Google Scholar
[7] Tubman E R, Scott R H H, Doyle H W, Meinecke J, Ahmed H, Alraddadi R A B, Bolis R, Cross J E, Crowston R, Doria D, Lamb D, Reville B, Robinson A P L, Tzeferacos P, Borghesi M, Gregori G, Woolsey N C 2017 Phys. Plasmas 24 103124Google Scholar
[8] Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755Google Scholar
[9] Edens A D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L 2004 Phys. Plasmas 11 4968Google Scholar
[10] Reighard A B, Drake R P, Dannenberg K K, Kremer D J, Grosskopf M, Harding E C, Leibrandt D R, Glendinning S G, Perry T S, Remington B A, Greenough J, Knauer J, Boehly T, Bouquet S, Boireau L, Koenig M, Vinci T 2006 Phys. Plasmas 13 082901Google Scholar
[11] Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Hüller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2410Google Scholar
[12] Hansen J F, Edwards M J, Froula D H, Edens A D, Gregori G, Ditmire T 2007 Astrophys. Space Sci. 307 219Google Scholar
[13] Bouquet S, Stéhlé C, Koenig M, Chiéze J P, Benuzzi-Mounaix A, Batani D, Leygnac S, Fleury X, Merdji H, Michaut C, Thais F, Grandjouan N, Hall T, Henry E, Malka V, Lafon J P J 2004 Phys. Rev. Lett. 92 225001Google Scholar
[14] Morioka T, Sakurai N, Maeno K, Honma H 2000 J. Visulaization. 3 51Google Scholar
[15] Bykovaa N G, Zabelinskiia I E, Ibragimovaa L B, Kozlova P V, Stovbunb S V, Terezab A M, Shatalova O P 2018 Russ. J. Phys. Chem. B 12 108Google Scholar
[16] Hall T A, Benuzzi A, Batani D, Beretta D, Bossi S, Faral B, Koenig M, Krishnan J, Löwer T, Mahdieh M 1997 Phys. Rev. E 55 6
[17] Vinci T, Koenig M, Benuzzi-Mounaix A, Michaut C, Boireau L, Leygnac S, Bouquet S, Peyrusse O, Batani D 2006 Phys. Plasmas 13 010702Google Scholar
[18] Koenig M, Vinci T, Benuzzi-Mounaix A, Ozaki N, Ravasio A, Rabec le Glohaec M, Boireau L, Michaut C, Bouquet S, Atzeni S, Schiavi A, Peyrusse O, Batani D 2006 Phys. Plasmas 13 056504Google Scholar
[19] Kuramitsu Y, Ohnishi N, Sakawa Y, Morita T, Tanji H, Ide T, Nishio K, Gregory C D, Waugh J N, Booth N, Heathcote R, Murphy C, Gregori G, Smallcombe J, Barton C, Dizière A, Koenig M, Woolsey N, Matsumoto Y, Mizuta A, Sugiyama T, Matsukiyo S, Moritaka T, Sano T, Takabe H 2016 Phys. Plasmas 23 032126Google Scholar
[20] Benuzzi-Mounaix A, Koenig M, Ravasio A, Vinci T, Ozaki N, Rabec le Gloahec M, Loupias B, Huser G, Henry E, Bouquet S, Michaut C, Hicks D, MacKinnon A, Patel P, Park H S, Le Pape S, Boehly T, Borghesi M, Cecchetti C, Notley M, Clark R, Bandyopadhyay S, Atzeni S, Schiavi A, Aglitskiy Y, Faenov A, Pikuz T, Batani D, Dezulian R, Tanaka K 2006 Plasma Phys. Controlled Fusion 48 B347Google Scholar
[21] Zheng J, Gu Y J, Chen Z Y, Chen Q F 2010 Phys. Rev. E 82 026401Google Scholar
[22] 王瑞荣, 王伟, 方智恒, 安红海, 贾果, 谢志勇, 孟祥富 2013 62 125202
Wang R R, Wang W, Fang Z H, An H H, Jia G, Xie Z Y, Meng X F 2013 Acta Phys. Sin. 62 125202
[23] Sen H K, Guess A W 1957 Phys. Rev. 108 560Google Scholar
[24] 泽尔道维奇, 莱伊捷尔 著 (张树材 译) 2016 激波和高温流体动力学现象物理学 (北京: 科学出版社)
Zel’dovich Y B, Raizer, Y P (translated by Zhang S C) 2016 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Beijing: Science Press) (in Chinese)
[25] Drake R P 2007 Phys. Plasmas 14 043301Google Scholar
[26] McClarren R G, Drake R P, Morel J E, Holloway J P 2010 Phys. Plasmas 17 093301Google Scholar
[27] Mabey P, Michel T, Albertazzi B, Falize E, Koenig M 2020 Phys. Plasmas 27 083302Google Scholar
[28] Zinn J 1973 J. Comput. Phys. 13 569Google Scholar
[29] Yan J, Wu Z Q 2002 Phys. Rev. E 65 066401Google Scholar
[30] Bauche-Arnoult C, Bauche J, Klapisch M 1979 Phys. Rev. A 20 2424Google Scholar
[31] Bar-Shalom A, Oreg J, Goldstein W H 1995 Phys. Rev. E 51 4882
[32] Jin F, Zeng J, Yuan J, Han G X, Wu Z Q, Yan J, Wang M S, Peng Y L 2005 JQSRT 95 241Google Scholar
[33] Li Q, Liu H F, Zhang G M, Zhao Y H, Lu G, Tian M F, Song H F 2016 Phys. Plasmas 23 112709Google Scholar
[34] 尼基弗洛夫, 诺维科夫, 乌瓦洛夫 著 (李国政 译) 2004 高温等离子体辐射不透明度和状态方程的计算 (北京: 国防工业出版社)
Никифоров А Ф, Новиков В Г, Уваров В Б (Переводчик Li G Z) 2004 Квантово-Статистические Модели Высокотемпературной Плазмы И Методы Расчета Росселандовых Пробегов И Уравнений Состояния (Пекин: Издательство Оборонной Промышленности) Глава IV и глава VI, раздел III (Перевод На Китайский Язык)
[35] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2020 https://physics.nist.gov/asd
[36] Schmalz R F, Meyer-ter-Vehn J, Ramis R 1986 Phys. Rev. A 34 2177Google Scholar
-
图 2 氙气的状态方程数据 (a)温度(T, 单位为eV)与比内能(E, 单位为erg/g (1 erg/g = 10–7 J/g))之比随E的变化; (b)压强(P, 单位dyn/cm2 (1 dyn/ cm2 = 10–5 N/ cm2))与E和密度(
$ \rho $ , 单位g/cm3)乘积之比随E的变化. 参数使用比值形式是为方便程序计算Fig. 2. Equation-of-state data of xenon: (a) Variation of the ratio between temperature (T, in eV) and specific inertial energy (E, in erg/g) with E; (b) variation of ratio between pressure (P, in dyn/cm2) and the multiplication of E and density (
$ \rho $ , in g/cm3) with E. The parameters are shown by ratios for computation convenience.图 7 高温区表面(虚线)、激波表面(点线)的黑体辐射光谱与氙气对外辐射光谱(实线)的比较. (a)−(i)代表不同时刻的计算结果, 辐射能流统一投影到激波表面以避免球几何发散带来的影响
Fig. 7. Comparison among the blackbody spectrums at the surface of high-temperature-core (dash line), at the surface of the shock (dotted line), and the radiation spectrum outward-emitted by the radiative shock (solid line). (a)−(i) represent the result at different time, and all the radiation fluxes are projected on the shock surfaces to eliminate the spherical spreading effect.
-
[1] Ensman L, Burrows A 1992 Astrophys. J. 393 742Google Scholar
[2] DE Young D S 1991 Science 252 389Google Scholar
[3] Chakrabarti S K, Titarchuk L G 1995 Astrophys. J. 455 623Google Scholar
[4] Pak A, Divol L, Gregori G, Weber S, Atherton J, Bennedetti R, Bradley D K, Callahan D, Casey D T, Dewald E, Döppner T, Edwards M J, Frenje J A, Glenn S, Grim G P, Hicks D, Hsing W W, Izumi N, Jones O S, Johnson M G, Khan S F, Kilkenny J D, Kline J L, Kyrala G A, Lindl J, Landen O L, Le Pape S, Ma T, MacPhee A, MacGowan B J, MacKinnon A J, Masse L, Meezan N B, Moody J D, Olson R E, Ralph J E, Robey H F, Park H S, Remington B A, Ross J S, Tommasini R, Town R P J, Smalyuk V, Glenzer S H, Moses E I 2013 Phys. Plasmas 20 056315Google Scholar
[5] 江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚 2004 53 3424
Jiang S E, Li W H, Sun K X, Jiang X H, Liu Y G, Gui Y L, Chen J S, Ding Y K, Zheng Z J 2004 Acta Phys. Sin. 53 3424
[6] Kuranz C C, Park H S, Remington B A, Drake R P, Miles A R, Robey H F, Kilkenny J D, Keane C J, Kalantar D H, Huntington C M, Krauland C M, Harding E C, Grosskopf M J, Marion D C, Doss F W, Myra E, Maddox B, Young B, Kline J L, Kyrala G, Plewa T, Wheeler J C, Arnett W D, Wallace R J, Giraldez E, Nikroo A 2011 Astrophys. Space Sci. 336 207Google Scholar
[7] Tubman E R, Scott R H H, Doyle H W, Meinecke J, Ahmed H, Alraddadi R A B, Bolis R, Cross J E, Crowston R, Doria D, Lamb D, Reville B, Robinson A P L, Tzeferacos P, Borghesi M, Gregori G, Woolsey N C 2017 Phys. Plasmas 24 103124Google Scholar
[8] Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755Google Scholar
[9] Edens A D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L 2004 Phys. Plasmas 11 4968Google Scholar
[10] Reighard A B, Drake R P, Dannenberg K K, Kremer D J, Grosskopf M, Harding E C, Leibrandt D R, Glendinning S G, Perry T S, Remington B A, Greenough J, Knauer J, Boehly T, Bouquet S, Boireau L, Koenig M, Vinci T 2006 Phys. Plasmas 13 082901Google Scholar
[11] Benuzzi A, Koenig M, Faral B, Krishnan J, Pisani F, Batani D, Bossi S, Beretta D, Hall T, Ellwi S, Hüller S, Honrubia J, Grandjouan N 1998 Phys. Plasmas 5 2410Google Scholar
[12] Hansen J F, Edwards M J, Froula D H, Edens A D, Gregori G, Ditmire T 2007 Astrophys. Space Sci. 307 219Google Scholar
[13] Bouquet S, Stéhlé C, Koenig M, Chiéze J P, Benuzzi-Mounaix A, Batani D, Leygnac S, Fleury X, Merdji H, Michaut C, Thais F, Grandjouan N, Hall T, Henry E, Malka V, Lafon J P J 2004 Phys. Rev. Lett. 92 225001Google Scholar
[14] Morioka T, Sakurai N, Maeno K, Honma H 2000 J. Visulaization. 3 51Google Scholar
[15] Bykovaa N G, Zabelinskiia I E, Ibragimovaa L B, Kozlova P V, Stovbunb S V, Terezab A M, Shatalova O P 2018 Russ. J. Phys. Chem. B 12 108Google Scholar
[16] Hall T A, Benuzzi A, Batani D, Beretta D, Bossi S, Faral B, Koenig M, Krishnan J, Löwer T, Mahdieh M 1997 Phys. Rev. E 55 6
[17] Vinci T, Koenig M, Benuzzi-Mounaix A, Michaut C, Boireau L, Leygnac S, Bouquet S, Peyrusse O, Batani D 2006 Phys. Plasmas 13 010702Google Scholar
[18] Koenig M, Vinci T, Benuzzi-Mounaix A, Ozaki N, Ravasio A, Rabec le Glohaec M, Boireau L, Michaut C, Bouquet S, Atzeni S, Schiavi A, Peyrusse O, Batani D 2006 Phys. Plasmas 13 056504Google Scholar
[19] Kuramitsu Y, Ohnishi N, Sakawa Y, Morita T, Tanji H, Ide T, Nishio K, Gregory C D, Waugh J N, Booth N, Heathcote R, Murphy C, Gregori G, Smallcombe J, Barton C, Dizière A, Koenig M, Woolsey N, Matsumoto Y, Mizuta A, Sugiyama T, Matsukiyo S, Moritaka T, Sano T, Takabe H 2016 Phys. Plasmas 23 032126Google Scholar
[20] Benuzzi-Mounaix A, Koenig M, Ravasio A, Vinci T, Ozaki N, Rabec le Gloahec M, Loupias B, Huser G, Henry E, Bouquet S, Michaut C, Hicks D, MacKinnon A, Patel P, Park H S, Le Pape S, Boehly T, Borghesi M, Cecchetti C, Notley M, Clark R, Bandyopadhyay S, Atzeni S, Schiavi A, Aglitskiy Y, Faenov A, Pikuz T, Batani D, Dezulian R, Tanaka K 2006 Plasma Phys. Controlled Fusion 48 B347Google Scholar
[21] Zheng J, Gu Y J, Chen Z Y, Chen Q F 2010 Phys. Rev. E 82 026401Google Scholar
[22] 王瑞荣, 王伟, 方智恒, 安红海, 贾果, 谢志勇, 孟祥富 2013 62 125202
Wang R R, Wang W, Fang Z H, An H H, Jia G, Xie Z Y, Meng X F 2013 Acta Phys. Sin. 62 125202
[23] Sen H K, Guess A W 1957 Phys. Rev. 108 560Google Scholar
[24] 泽尔道维奇, 莱伊捷尔 著 (张树材 译) 2016 激波和高温流体动力学现象物理学 (北京: 科学出版社)
Zel’dovich Y B, Raizer, Y P (translated by Zhang S C) 2016 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Beijing: Science Press) (in Chinese)
[25] Drake R P 2007 Phys. Plasmas 14 043301Google Scholar
[26] McClarren R G, Drake R P, Morel J E, Holloway J P 2010 Phys. Plasmas 17 093301Google Scholar
[27] Mabey P, Michel T, Albertazzi B, Falize E, Koenig M 2020 Phys. Plasmas 27 083302Google Scholar
[28] Zinn J 1973 J. Comput. Phys. 13 569Google Scholar
[29] Yan J, Wu Z Q 2002 Phys. Rev. E 65 066401Google Scholar
[30] Bauche-Arnoult C, Bauche J, Klapisch M 1979 Phys. Rev. A 20 2424Google Scholar
[31] Bar-Shalom A, Oreg J, Goldstein W H 1995 Phys. Rev. E 51 4882
[32] Jin F, Zeng J, Yuan J, Han G X, Wu Z Q, Yan J, Wang M S, Peng Y L 2005 JQSRT 95 241Google Scholar
[33] Li Q, Liu H F, Zhang G M, Zhao Y H, Lu G, Tian M F, Song H F 2016 Phys. Plasmas 23 112709Google Scholar
[34] 尼基弗洛夫, 诺维科夫, 乌瓦洛夫 著 (李国政 译) 2004 高温等离子体辐射不透明度和状态方程的计算 (北京: 国防工业出版社)
Никифоров А Ф, Новиков В Г, Уваров В Б (Переводчик Li G Z) 2004 Квантово-Статистические Модели Высокотемпературной Плазмы И Методы Расчета Росселандовых Пробегов И Уравнений Состояния (Пекин: Издательство Оборонной Промышленности) Глава IV и глава VI, раздел III (Перевод На Китайский Язык)
[35] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2020 https://physics.nist.gov/asd
[36] Schmalz R F, Meyer-ter-Vehn J, Ramis R 1986 Phys. Rev. A 34 2177Google Scholar
计量
- 文章访问数: 5145
- PDF下载量: 99
- 被引次数: 0