搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中华白海豚声接收通道

张闯 宋忠长 张宇

引用本文:
Citation:

中华白海豚声接收通道

张闯, 宋忠长, 张宇

Sound reception pathway of the Indo-Pacific humpback dolphin

Zhang Chuang, Song Zhong-Chang, Zhang Yu
PDF
HTML
导出引用
  • 中华白海豚依靠其回声定位系统进行导航与目标探测. 本文利用计算机断层扫描、超声测量与数值模拟研究中华白海豚声呐系统声接收过程. 计算机断层扫描结果表明, 中华白海豚声接收系统位于下颌区域. 声接收通道主要包含下颌骨内侧脂肪、下颌骨外侧脂肪、下颌骨与听小骨. 数值模拟结果表明, 中华白海豚的声接收通道具有多样性. 声波可沿着下颌骨传播至下颌内部脂肪, 并随后传导至听小骨处. 声波还可以通过下颌骨外侧脂肪进入声接收系统. 声接收通道的多样性表明中华白海豚声呐系统的复杂性, 探究声接收工作原理能加深下颌脂肪与下颌骨等多相介质形成的系统对声传播的控制, 可为人工声接收系统设计提供新思路.
    The Indo-Pacific humpback dolphins (Sousa chinensis) are nearshore odontocetes, distributed in tropical and sub-tropical oceans. This species has been studied to unveil its ability to echolocate. Indo-Pacific humpback dolphin, like its Odontocetes companion, relies on echolocation system to navigate and detect targets, which contains a sound transmitting system in the forehead and a sound reception in the jaw. Their soft tissues present gradient sound speed and density distributions in the forehead. Solid skull, air structures and soft tissues form a natural multi-phase meta-material to modulate sounds into energy focused beams. This multi-phase property is also applied to the hearing system as revealed in current papers. Here in this work, the physical mechanism of sound reception in the Indo-Pacific humpback dolphin is studied by using the computed tomography (CT) scanning, physical measurements and numerical simulation. Hounsfield units (HUs) of the forehead tissues are extracted from CT scanning results. A linear relationship is revealed between HU and sound speed, HU and density, which are combined with HU distribution to reconstruct the sound speed and density distribution of the sound reception system. The CT scanning shows that the sound reception system located at lower head is composed of external mandibular fat, internal mandibular fat, mandible and hearing bones. Model of sound reception system is developed on the basis of CT scanning results and used in subsequent simulations. The physical process of sound reception reveals that the hearing system can guide sounds through variable pathways to reach hearing bones. Sounds can enter into the reception system along the acoustic pathways composed of mandible, external mandibular fat and internal mandibular fat. Mandibular fat and mandible form a unique sound pathway. In addition, another pathway which is composed of external mandibular fat, pan bone and internal mandibular fat can lead the sound to propagate and finally arrive at hearing bones. The diversity of acoustic pathways is applicable to a range of frequencies from 30 to 120 kHz. The variability of acoustic pathways in Indo-Pacific humpback dolphin shows the complexity of its biosonar system. The anatomy and simulation results can deepen our understanding of the mechanism of echolocation of Indo-Pacific humpback dolphin and provide references for designing man-made sound reception devices.
      通信作者: 张宇, yuzhang@xmu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFC1407504)和国家自然科学基金(批准号: 41676023, 41276040)资助的课题
      Corresponding author: Zhang Yu, yuzhang@xmu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFC1407504) and the National Natural Science Foundation of China (Grant Nos. 41676023, 41276040)
    [1]

    Au W W L 1993 The Sonar of Dolphins (New York: Springer-Verlag) pp1−21

    [2]

    Jefferson T A, Hung S K 2004 Aquat. Mamm. 30 149Google Scholar

    [3]

    Van Parijs S M, Corkeron P J 2001 J. Mar. Biol. Assoc. U. K. 81 533Google Scholar

    [4]

    王先艳, 妙星, 吴福星, 闫晨曦, 刘文华, 祝茜 2012 台湾海峡 31 225Google Scholar

    Wang X Y, Miao X, Wu F X, Yan C X, Liu W H, Zhu Q 2012 J. Oceanogr. Taiwan Strait 31 225Google Scholar

    [5]

    刘文华, 黄宗国 2000 海洋学报 22 95Google Scholar

    Liu W H, Huang Z G 2000 Acta Oceanolog. Sin. 22 95Google Scholar

    [6]

    Chen B Y, Zheng D M, Ju J F, Xu X R, Zhou K Y, Yang G 2011 Zool. Stud. 50 751

    [7]

    Li S H 2020 Science 367 1313Google Scholar

    [8]

    Fang L, Wu Y P, Wang K X, Pine M K, Wang D, Li S 2017 J. Acoust. Soc. Am. 142 771Google Scholar

    [9]

    Fang L, Li S H, Wang K X, Wang Z T, Shi W J, Wang D 2015 J. Acoust. Soc. Am. 138 1346Google Scholar

    [10]

    Wang Z T, Fang L, Shi W J, Wang K X, Wang D 2013 J. Acoust. Soc. Am. 133 2479Google Scholar

    [11]

    Song Z C, Zhang Y, Wang X Y, Wei C 2017 J. Acoust. Soc. Am. 142 EL381Google Scholar

    [12]

    Zhang Y, Song Z C, Wang X Y, Cao W W, Au W W L 2017 Phys. Rev. Appl. 8 064002Google Scholar

    [13]

    Song Z C, Zhang Yu, Berggren P, Wei C 2017 J. Acoust. Soc. Am. 141 681Google Scholar

    [14]

    Song Z C, Zhang Yu, Wang X Y 2018 Europhys. Lett. 124 64004Google Scholar

    [15]

    Song Z C, Zhang Y, Mooney T A, Wang X Y, Smith A B, Xu X H 2019 Bioinspiration Boimimetics 14 016004Google Scholar

    [16]

    Purves P E, Pilleri G E 1983 Echolocation in Whales and Dolphins (London: Academic Press) pp1−631

    [17]

    Purves P E 1996 Anatomy and Physiology of the Outer and Middle Ear in Cetaceans In Whales, Dolphins, and Porpoises (Berkeley: University of California Press) pp321−380

    [18]

    Norris K S 1968 The Evolution of Acoustic Mechanisms in Odontocete Cetaceans in Evolution and Environment (New Haven: Yale University Press) pp297−324

    [19]

    Bullock T H, Grinnell A D, Ikezono E, Kameda K, Katsuki J, Nomota M, Sato O, Suga N, Yanagisawa K 1968 Z. Vergleichende Physiol. 59 117

    [20]

    McCormick J G, Wever E G, Palin J 1970 J. Acoust. Soc. Am. 48 1418Google Scholar

    [21]

    Brill R L, Sevenich M L, Sullivan T J, Sustman J D, Witt R E 1988 Mar. Mammal Sci. 4 223Google Scholar

    [22]

    Varanasi U S, Malins D C 1970 Biochemistry 9 4576Google Scholar

    [23]

    Cranford T W, McKenna M F, Soldevilla M S, Wiggins S M, Goldbogen J A, Shadwick R E, Krysl P, Leger J A S, Hildebrand J A 2008 Anat. Rec. 291 353Google Scholar

    [24]

    Cranford T W, Krysl P, Hildebrand J A 2008 Bioinspir. Boimim. 3 016001Google Scholar

    [25]

    Aroyan J L 2001 J. Acoust. Soc. Am. 110 3305Google Scholar

    [26]

    Ketten D R 2000 Cetacean Ears In Hearing by Whales and Dolphins (New York: Springer) pp43−108

    [27]

    王丁, 王克雄, 刘仁俊, 陈佩薰, 谌刚, 王治藩, 卢文祥, 杨叔子 1989 湘潭大学自然科学学报 2 116

    Wang D, Wang K X, Liu R J, Chen P X, Shen G, Wang Z F, Lu W X, Yang S Z 1989 Nat. Sci. J. Xiangtan Univ. 2 116

    [28]

    肖友芙, 王丁, 王克雄 1993 海洋学报 15 125

    Xiao Y F, Wang D, Wang K X 1993 Acta Oceanolog. Sin. 15 125

    [29]

    王丁, 王克雄, 刘仁俊, 谌刚, 卢文祥 1988 华中理工大学学报 3 55

    Wang D, Wang K X, Liu R J, Shen G, Lu W X 1988 J. Huazhong Univ. Sci. Tech. 3 55

    [30]

    Li S H, Wang D, Wang K X, Taylor E A, Cros E, Shi W J, Wang Z T, Fang L, Chen Y F, Kong F 2012 J. Exp. Biol. 215 3055Google Scholar

    [31]

    Wei C, Zhang Y, Au W W L 2014 J. Acoust. Soc. Am. 136 423Google Scholar

  • 图 1  (a) 中华白海豚头部三维重建; (b) 中华白海豚声接收系统水平截面; (c) 中华白海豚声接收系统垂直系统

    Fig. 1.  (a) Reconstruction of Indo-Pacific humpback dolphin head in three dimensions; (b) sound reception system in horizontal plane; (c) sound reception system in vertical plane.

    图 2  中华海豚头部声接收系统不同截面的声速、密度分布 (a) 水平截面(xz)声速分布; (b) 垂直截面(yz)声速分布; (c) 水平截面(xz)密度分布; (d) 垂直截面(yz)密度分布

    Fig. 2.  Distributions of sound speed and density in different planes of reception system in Indo-Pacific humpback dolphin: (a) Sound speed distribution in horizontal plane; (b) sound speed distribution in vertical plane; (c) density distribution in horizontal plane; (d) density distribution in vertical plane.

    图 3  中华白海豚不同截面声接收模型网格划分 (a) 水平截面计算域; (b) 垂直截面计算域; (c) 头部水平截面声接收系统; (d) 头部垂直截面声接收系统

    Fig. 3.  Meshing of sound reception models in different planes: (a) Computing domain in horizontal plane; (b) computing domain in vertical plane; (c) sound reception system in horizontal plane; (d) sound reception system in vertical plane.

    图 4  无指向性声源0°入射中华白海豚不同截面的声波传播 (a)水平截面; (b)垂直截面

    Fig. 4.  Propagation plots of an omnidirectional short-duration impulse source with an incident angle of 0° in different sections: (a) Horizontal section; (b) vertical section.

    图 5  无指向性声脉冲从不同角度入射中华白海豚声接收系统水平截面的传播细节 (a) 30°; (b) 15°; (c) –15°; (d) –30°

    Fig. 5.  Propagation plots of four omnidirectional short-duration impulse sources in horizontal section from different incident angles: (a) 30°; (b) 15°; (c) –15°; (d) –30°.

    图 6  无指向性声脉冲从不同角度入射中华白海豚声接收系统垂直截面的传播细节 (a) 30°; (b) 15°; (c) –15°; (d) –30°

    Fig. 6.  Propagation plots of four omnidirectional short-duration impulse sources in vertical section from different incident angles: (a) 30°; (b) 15°; (c) –15°; (d) –30°.

    图 7  无指向性的单频声波从0°入射中华白海豚声接收系统不同截面的稳态声场 水平截面: (a) 30 kHz, (b) 60 kHz, (c) 120 kHz; 垂直截面: (d) 30 kHz, (e) 60 kHz, (f) 120 kHz

    Fig. 7.  The sound field of omnidirectional single-frequency sound waves with an incident angle of 0° in different sections directionless single-frequency sound waves. Horizontal section: (a) 30 kHz, (b) 60 kHz, (c) 120 kHz; vertical section: (d) 30 kHz, (e) 60 kHz, (f) 120 kHz.

    Baidu
  • [1]

    Au W W L 1993 The Sonar of Dolphins (New York: Springer-Verlag) pp1−21

    [2]

    Jefferson T A, Hung S K 2004 Aquat. Mamm. 30 149Google Scholar

    [3]

    Van Parijs S M, Corkeron P J 2001 J. Mar. Biol. Assoc. U. K. 81 533Google Scholar

    [4]

    王先艳, 妙星, 吴福星, 闫晨曦, 刘文华, 祝茜 2012 台湾海峡 31 225Google Scholar

    Wang X Y, Miao X, Wu F X, Yan C X, Liu W H, Zhu Q 2012 J. Oceanogr. Taiwan Strait 31 225Google Scholar

    [5]

    刘文华, 黄宗国 2000 海洋学报 22 95Google Scholar

    Liu W H, Huang Z G 2000 Acta Oceanolog. Sin. 22 95Google Scholar

    [6]

    Chen B Y, Zheng D M, Ju J F, Xu X R, Zhou K Y, Yang G 2011 Zool. Stud. 50 751

    [7]

    Li S H 2020 Science 367 1313Google Scholar

    [8]

    Fang L, Wu Y P, Wang K X, Pine M K, Wang D, Li S 2017 J. Acoust. Soc. Am. 142 771Google Scholar

    [9]

    Fang L, Li S H, Wang K X, Wang Z T, Shi W J, Wang D 2015 J. Acoust. Soc. Am. 138 1346Google Scholar

    [10]

    Wang Z T, Fang L, Shi W J, Wang K X, Wang D 2013 J. Acoust. Soc. Am. 133 2479Google Scholar

    [11]

    Song Z C, Zhang Y, Wang X Y, Wei C 2017 J. Acoust. Soc. Am. 142 EL381Google Scholar

    [12]

    Zhang Y, Song Z C, Wang X Y, Cao W W, Au W W L 2017 Phys. Rev. Appl. 8 064002Google Scholar

    [13]

    Song Z C, Zhang Yu, Berggren P, Wei C 2017 J. Acoust. Soc. Am. 141 681Google Scholar

    [14]

    Song Z C, Zhang Yu, Wang X Y 2018 Europhys. Lett. 124 64004Google Scholar

    [15]

    Song Z C, Zhang Y, Mooney T A, Wang X Y, Smith A B, Xu X H 2019 Bioinspiration Boimimetics 14 016004Google Scholar

    [16]

    Purves P E, Pilleri G E 1983 Echolocation in Whales and Dolphins (London: Academic Press) pp1−631

    [17]

    Purves P E 1996 Anatomy and Physiology of the Outer and Middle Ear in Cetaceans In Whales, Dolphins, and Porpoises (Berkeley: University of California Press) pp321−380

    [18]

    Norris K S 1968 The Evolution of Acoustic Mechanisms in Odontocete Cetaceans in Evolution and Environment (New Haven: Yale University Press) pp297−324

    [19]

    Bullock T H, Grinnell A D, Ikezono E, Kameda K, Katsuki J, Nomota M, Sato O, Suga N, Yanagisawa K 1968 Z. Vergleichende Physiol. 59 117

    [20]

    McCormick J G, Wever E G, Palin J 1970 J. Acoust. Soc. Am. 48 1418Google Scholar

    [21]

    Brill R L, Sevenich M L, Sullivan T J, Sustman J D, Witt R E 1988 Mar. Mammal Sci. 4 223Google Scholar

    [22]

    Varanasi U S, Malins D C 1970 Biochemistry 9 4576Google Scholar

    [23]

    Cranford T W, McKenna M F, Soldevilla M S, Wiggins S M, Goldbogen J A, Shadwick R E, Krysl P, Leger J A S, Hildebrand J A 2008 Anat. Rec. 291 353Google Scholar

    [24]

    Cranford T W, Krysl P, Hildebrand J A 2008 Bioinspir. Boimim. 3 016001Google Scholar

    [25]

    Aroyan J L 2001 J. Acoust. Soc. Am. 110 3305Google Scholar

    [26]

    Ketten D R 2000 Cetacean Ears In Hearing by Whales and Dolphins (New York: Springer) pp43−108

    [27]

    王丁, 王克雄, 刘仁俊, 陈佩薰, 谌刚, 王治藩, 卢文祥, 杨叔子 1989 湘潭大学自然科学学报 2 116

    Wang D, Wang K X, Liu R J, Chen P X, Shen G, Wang Z F, Lu W X, Yang S Z 1989 Nat. Sci. J. Xiangtan Univ. 2 116

    [28]

    肖友芙, 王丁, 王克雄 1993 海洋学报 15 125

    Xiao Y F, Wang D, Wang K X 1993 Acta Oceanolog. Sin. 15 125

    [29]

    王丁, 王克雄, 刘仁俊, 谌刚, 卢文祥 1988 华中理工大学学报 3 55

    Wang D, Wang K X, Liu R J, Shen G, Lu W X 1988 J. Huazhong Univ. Sci. Tech. 3 55

    [30]

    Li S H, Wang D, Wang K X, Taylor E A, Cros E, Shi W J, Wang Z T, Fang L, Chen Y F, Kong F 2012 J. Exp. Biol. 215 3055Google Scholar

    [31]

    Wei C, Zhang Y, Au W W L 2014 J. Acoust. Soc. Am. 136 423Google Scholar

  • [1] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬.  , 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [2] 胥守振, 谢实梦, 吴丹, 迟子惠, 黄林. 基于声学扫描振镜的超声/光声双模态成像技术.  , 2022, 71(5): 050701. doi: 10.7498/aps.71.20211394
    [3] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为.  , 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [4] 胥守振, 黄林, 谢实梦, 迟子惠, 吴丹. 基于声学扫描振镜的超声/光声双模态成像技术.  , 2021, (): . doi: 10.7498/aps.70.20211394
    [5] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究.  , 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [6] 贺子厚, 赵静波, 姚宏, 陈鑫. 薄膜底面Helmholtz腔声学超材料的隔声性能.  , 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [7] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性.  , 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [8] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究.  , 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [9] 曹松华, 吴九汇, 王煜, 侯明明, 李竞. 声学脉冲序列及全透声机理研究.  , 2016, 65(6): 064302. doi: 10.7498/aps.65.064302
    [10] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究.  , 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [11] 张郑兵, 马小柏, 金钻明, 马国宏, 杨金波. Fe/Si薄膜中相干声学声子的光激发研究.  , 2012, 61(9): 097401. doi: 10.7498/aps.61.097401
    [12] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导.  , 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [13] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响.  , 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [14] 姚凌江, 王玲玲. 含半圆弧形腔的量子波导中声学声子输运和热导特性.  , 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [15] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性.  , 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [16] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运.  , 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [17] 刘晓晗, 黄大鸣, 王兴军, 张春红, 朱海军, 蒋最敏, 王迅. 近周期超晶格中的声学声子及其光散射特性.  , 1997, 46(9): 1863-1872. doi: 10.7498/aps.46.1863
    [18] 徐骏, 陈坤基, 韩和相, 李国华, 汪兆平. 非晶态半导体超晶格中的纵声学声子折叠效应.  , 1992, 41(12): 1938-1942. doi: 10.7498/aps.41.1938
    [19] 雷啸霖, 丁秦生. 非线性电子输运中声学和光学声子的联合散射效应.  , 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
    [20] 冯若, 龚秀芬, 朱正亚, 石涛. 生物媒质中非线性声学参量B/A的研究.  , 1984, 33(9): 1282-1286. doi: 10.7498/aps.33.1282
计量
  • 文章访问数:  7385
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 修回日期:  2020-07-16
  • 上网日期:  2020-11-25
  • 刊出日期:  2020-12-05

/

返回文章
返回
Baidu
map