-
采用基于密度泛函理论的广义梯度近似平面波赝势方法,探究四种ZnO-∑7(1230)孪晶界中VZn-NO-H复合体的电子结构和p型导电机理.计算结果表明,在ZnO-∑7(1230)孪晶界中,N掺杂后会与锌空位(VZn)、氢填隙(Hi)等点缺陷结合,进而形成VZn-NO-H复合体,并出现在孪晶中的晶格应变集中区.此外,四种孪晶界中孪晶GB7a有利于VZn-NO-H离化能降低,从而使其表现出浅受主特征.分析显示特殊的孪晶结构导致了氮替位(NO)与近邻的O原子间距离缩短,阴离子之间发生相互作用,导致禁带中的空带能级下降,降低了电子跃迁所需能量.这一结果也说明GB7a孪晶界中的VZn-NO-H可能成为N掺杂ZnO材料的p型导电的来源之一.The origin of the p-type conductivity in N-doped ZnO has been a controversial issue for years, since isolated N substituted for O site (NO) was found to have high ionization energy. A recent experiment demonstrates that the p-type conductivity is attributed to the VZn-NO-H shallow acceptor complex. However, besides the complex, there are many other defects in ZnO, such as twin grain boundaries. They are commonly two-dimensional defects, and inevitably affect the p-type conductivity of the complex. By applying first principle calculations, we present the electronic structures and p-type conductivity of ZnO ∑7 (1230) twin grain boundaries containing VZn-NO-H complexes. Four types of ∑7 twin grain boundaries are investigated, and the VZn-NO-H complex is found to have a tendency to appearing in the stress raisers of the twin grain boundaries. The lowest formation energy under Zn-rich condition is only 0.52 eV for the complex in GB7a, a type of ∑7 twin grain boundary with anion-anion bonds, while the value is 3.25 eV for the complex in bulk ZnO. For the ionization energy, the complex in GB7a is more easily ionized, and has a value of 0.38 eV, compared with 0.67 eV in bulk ZnO. The result of density of states shows that the electron transition is dominated by the empty defect levels in forbidden band, which are occupied by O 2p and N 2p orbital. Further analysis indicates that the special structure of GB7a shortens the distances between NO and its neighbor O atoms, and the shortest N–O bond is only 2.38 Å, which also means a strong orbital hybridization between O and N. As a result, the energy level splitting is enhanced, and the empty energy level in the forbidden band is shifted down to valence band maximum. So, GB7a can favor the ionization in VZn-NO-H complex. Although GB7a is a special case of the twin grain boundaries, the result also gives us a new idea to understand the origin of p-type conductivity in N-doped ZnO.
-
Keywords:
- density functional theory /
- ZnO /
- twin grain boundary
[1] özgr U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doöan S, Avrutin V, Cho S J, Morkoö H 2005 J. Appl. Phys. 98 041301
[2] Fons P, Niki S, Kolobov A V, Ohkubo M, Tominaga J, Friedrich S, Carboni R, Boscherini F 2006 Nucl. Instrum. Methods Phys. Res. B 246 75
[3] Chen L J, Li W X, Dai J F, Wang Q 2014 Acta Phys. Sin. 63 196101 (in Chinese)[陈立晶, 李维学, 戴剑锋, 王青 2014 63 196101]
[4] Tarun M C, Iqbal M Z, McCluskey M D 2011 AIP Adv. 1 022105
[5] Gao J, Zhang X, Sun Y, Zhao Q, Yu D 2010 Nanotechnology 21 245703
[6] Li X, Yan Y, Gessert T A, Perkins C L, Young D, DeHart C, Young M, Coutts T J 20031342
[7] Lim L Y, Lany S, Chang Y J, Rotenberg E, Zunger A, Toney M F 2012 Phys. Rev. B 86 235113
[8] Reynolds J G, Reynolds C L, Mohanta A, Muth J F, Rowe J E, Everitt H O, Aspnes D E 2013 Appl. Phys. Lett. 102 152114
[9] Yang T Y, Kong C Y, Ruan H B, Qin G P, Li W J, Liang W W, Meng X D, Zhao Y H, Fang L, Cui Y T 2013 Acta Phys. Sin. 62 037703 (in Chinese)[杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 催玉亭 2013 62 037703]
[10] Wang N, Kong C Y, Zhu R J, Qin G P, Dai T L, Nan M, Ruan H B 2007 Acta Phys. Sin. 56 5974 (in Chinese)[王楠, 孔春阳, 朱仁江, 秦国平, 戴特力, 南貌, 阮海波 2007 56 5974]
[11] Tang K, Zhu S, Xu Z, Ye J, Gu S 2017 J. Alloys Compd. 696 590
[12] Sun J W, Lu Y M, Liu Y C, Shen D Z, Zhang Z Z, Li B H, Zhang J Y, Yao B, Zhao D X, Fan X W 2006 Solid State Commun. 140 345
[13] Amini M N, Saniz R, Lamoen D, Partoens B 2015 Phys. Chem. Chem. Phys. 17 5485
[14] Domingos H S, Carlsson J M, Bristowe P D, Hellsing B 2004 Interface Sci. 12 227
[15] Erhart P, Klein A, Albe K 2005 Phys. Rev. B 72 085213
[16] Zhang C Y, Li X M, Gao X D, Zhao J L, Wan K S, Bian J M 2006 Chem. Phys. Lett. 420 448
[17] Lahmer M A, Guergouri K 2015 Mater. Sci. Semicond. Process. 39 148
[18] Tahir N, Karim A, Persson K A, Hussain S T, Cruz A G, Usman M, Naeem M, Qiao R, Yang W, Chuang Y D, Hussain Z 2013 J. Phys. Chem. C 117 8968
[19] Wang B, Min J, Zhao Y, Sang W, Wang C 2009 Appl. Phys. Lett. 94 192101
[20] Körner W, Bristowe P D, Elsösser C 2011 Phys. Rev. B 84 045305
[21] Li Y H, Xia Q, Guo S K, Ma Z Q, Gao Y B, Gong X G, Wei S H 2015 J. Appl. Phys. 118 045708
[22] Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202
[23] Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314
[24] Hou Q Y, L Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102 (in Chinese)[侯清玉, 吕致远, 赵春旺 2014 63 197102]
[25] Hou Q Y, Wu Y, Zhao C W 2014 Acta Phys. Sin. 63 137201 (in Chinese)[侯清玉, 乌云, 赵春旺 2014 63 137201]
[26] Xu Z C, Hou Q Y 2015 Acta Phys. Sin. 64 157101 (in Chinese)[许镇潮, 侯清玉 2015 64 157101]
[27] Bang J, Sun Y Y, West D, Meyer B K, Zhang S 2015 J. Mater. Chem. C 3 339
[28] Agapito L A, Curtarolo S, Buongiorno Nardelli M 2015 Phys. Rev. X 5 011006
[29] Walsh A, Da Silva J L, Wei S H 2008 Phys. Rev. Lett. 100 256401
[30] Ma X, Wu Y, L Y, Zhu Y 2013 J. Phys. Chem. C 117 26029
[31] Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese)[曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 65 157201]
[32] Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese)[侯清玉, 董红英, 马文, 赵春旺 2013 62 157101]
[33] Limpijumnong S, Li X, Wei S H, Zhang S B 2005 Appl. Phys. Lett. 86 211910
[34] Li B S, Feng C, Cui Y X 2010 Chin. Phys. Lett. 27 017102
[35] Li H, Schirra L K, Shim J, Cheun H, Kippelen B, Monti O L A, Bredas J L 2012 Chem. Mater. 24 3044
[36] Lide D R 2014 CRC Handbook of Chemistry and Physics (95th Ed.) (USA:CRC Press)
[37] Liu L, Xu J, Wang D, Jiang M, Wang S, Li B, Zhang Z, Zhao D, Shan C X, Yao B, Shen D Z 2012 Phys. Rev. Lett. 108 215501
[38] Yong D Y, He H Y, Tang Z K, Wei S H, Pan B C 2015 Phys. Rev. B 92 235207
-
[1] özgr U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doöan S, Avrutin V, Cho S J, Morkoö H 2005 J. Appl. Phys. 98 041301
[2] Fons P, Niki S, Kolobov A V, Ohkubo M, Tominaga J, Friedrich S, Carboni R, Boscherini F 2006 Nucl. Instrum. Methods Phys. Res. B 246 75
[3] Chen L J, Li W X, Dai J F, Wang Q 2014 Acta Phys. Sin. 63 196101 (in Chinese)[陈立晶, 李维学, 戴剑锋, 王青 2014 63 196101]
[4] Tarun M C, Iqbal M Z, McCluskey M D 2011 AIP Adv. 1 022105
[5] Gao J, Zhang X, Sun Y, Zhao Q, Yu D 2010 Nanotechnology 21 245703
[6] Li X, Yan Y, Gessert T A, Perkins C L, Young D, DeHart C, Young M, Coutts T J 20031342
[7] Lim L Y, Lany S, Chang Y J, Rotenberg E, Zunger A, Toney M F 2012 Phys. Rev. B 86 235113
[8] Reynolds J G, Reynolds C L, Mohanta A, Muth J F, Rowe J E, Everitt H O, Aspnes D E 2013 Appl. Phys. Lett. 102 152114
[9] Yang T Y, Kong C Y, Ruan H B, Qin G P, Li W J, Liang W W, Meng X D, Zhao Y H, Fang L, Cui Y T 2013 Acta Phys. Sin. 62 037703 (in Chinese)[杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 催玉亭 2013 62 037703]
[10] Wang N, Kong C Y, Zhu R J, Qin G P, Dai T L, Nan M, Ruan H B 2007 Acta Phys. Sin. 56 5974 (in Chinese)[王楠, 孔春阳, 朱仁江, 秦国平, 戴特力, 南貌, 阮海波 2007 56 5974]
[11] Tang K, Zhu S, Xu Z, Ye J, Gu S 2017 J. Alloys Compd. 696 590
[12] Sun J W, Lu Y M, Liu Y C, Shen D Z, Zhang Z Z, Li B H, Zhang J Y, Yao B, Zhao D X, Fan X W 2006 Solid State Commun. 140 345
[13] Amini M N, Saniz R, Lamoen D, Partoens B 2015 Phys. Chem. Chem. Phys. 17 5485
[14] Domingos H S, Carlsson J M, Bristowe P D, Hellsing B 2004 Interface Sci. 12 227
[15] Erhart P, Klein A, Albe K 2005 Phys. Rev. B 72 085213
[16] Zhang C Y, Li X M, Gao X D, Zhao J L, Wan K S, Bian J M 2006 Chem. Phys. Lett. 420 448
[17] Lahmer M A, Guergouri K 2015 Mater. Sci. Semicond. Process. 39 148
[18] Tahir N, Karim A, Persson K A, Hussain S T, Cruz A G, Usman M, Naeem M, Qiao R, Yang W, Chuang Y D, Hussain Z 2013 J. Phys. Chem. C 117 8968
[19] Wang B, Min J, Zhao Y, Sang W, Wang C 2009 Appl. Phys. Lett. 94 192101
[20] Körner W, Bristowe P D, Elsösser C 2011 Phys. Rev. B 84 045305
[21] Li Y H, Xia Q, Guo S K, Ma Z Q, Gao Y B, Gong X G, Wei S H 2015 J. Appl. Phys. 118 045708
[22] Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202
[23] Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314
[24] Hou Q Y, L Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102 (in Chinese)[侯清玉, 吕致远, 赵春旺 2014 63 197102]
[25] Hou Q Y, Wu Y, Zhao C W 2014 Acta Phys. Sin. 63 137201 (in Chinese)[侯清玉, 乌云, 赵春旺 2014 63 137201]
[26] Xu Z C, Hou Q Y 2015 Acta Phys. Sin. 64 157101 (in Chinese)[许镇潮, 侯清玉 2015 64 157101]
[27] Bang J, Sun Y Y, West D, Meyer B K, Zhang S 2015 J. Mater. Chem. C 3 339
[28] Agapito L A, Curtarolo S, Buongiorno Nardelli M 2015 Phys. Rev. X 5 011006
[29] Walsh A, Da Silva J L, Wei S H 2008 Phys. Rev. Lett. 100 256401
[30] Ma X, Wu Y, L Y, Zhu Y 2013 J. Phys. Chem. C 117 26029
[31] Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese)[曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 65 157201]
[32] Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese)[侯清玉, 董红英, 马文, 赵春旺 2013 62 157101]
[33] Limpijumnong S, Li X, Wei S H, Zhang S B 2005 Appl. Phys. Lett. 86 211910
[34] Li B S, Feng C, Cui Y X 2010 Chin. Phys. Lett. 27 017102
[35] Li H, Schirra L K, Shim J, Cheun H, Kippelen B, Monti O L A, Bredas J L 2012 Chem. Mater. 24 3044
[36] Lide D R 2014 CRC Handbook of Chemistry and Physics (95th Ed.) (USA:CRC Press)
[37] Liu L, Xu J, Wang D, Jiang M, Wang S, Li B, Zhang Z, Zhao D, Shan C X, Yao B, Shen D Z 2012 Phys. Rev. Lett. 108 215501
[38] Yong D Y, He H Y, Tang Z K, Wei S H, Pan B C 2015 Phys. Rev. B 92 235207
计量
- 文章访问数: 6851
- PDF下载量: 187
- 被引次数: 0