搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GGA+U方法研究ZnO孪晶界对VZn-NO-H复合体对p型导电性的影响

吴静静 唐鑫 龙飞 唐壁玉

引用本文:
Citation:

GGA+U方法研究ZnO孪晶界对VZn-NO-H复合体对p型导电性的影响

吴静静, 唐鑫, 龙飞, 唐壁玉

Effect of ZnO twin grain boundary on p-type conductivity of VZn-NO-H complex:a GGA+U study

Wu Jing-Jing, Tang Xin, Long Fei, Tang Bi-Yu
PDF
导出引用
  • 采用基于密度泛函理论的广义梯度近似平面波赝势方法,探究四种ZnO-∑7(1230)孪晶界中VZn-NO-H复合体的电子结构和p型导电机理.计算结果表明,在ZnO-∑7(1230)孪晶界中,N掺杂后会与锌空位(VZn)、氢填隙(Hi)等点缺陷结合,进而形成VZn-NO-H复合体,并出现在孪晶中的晶格应变集中区.此外,四种孪晶界中孪晶GB7a有利于VZn-NO-H离化能降低,从而使其表现出浅受主特征.分析显示特殊的孪晶结构导致了氮替位(NO)与近邻的O原子间距离缩短,阴离子之间发生相互作用,导致禁带中的空带能级下降,降低了电子跃迁所需能量.这一结果也说明GB7a孪晶界中的VZn-NO-H可能成为N掺杂ZnO材料的p型导电的来源之一.
    The origin of the p-type conductivity in N-doped ZnO has been a controversial issue for years, since isolated N substituted for O site (NO) was found to have high ionization energy. A recent experiment demonstrates that the p-type conductivity is attributed to the VZn-NO-H shallow acceptor complex. However, besides the complex, there are many other defects in ZnO, such as twin grain boundaries. They are commonly two-dimensional defects, and inevitably affect the p-type conductivity of the complex. By applying first principle calculations, we present the electronic structures and p-type conductivity of ZnO ∑7 (1230) twin grain boundaries containing VZn-NO-H complexes. Four types of ∑7 twin grain boundaries are investigated, and the VZn-NO-H complex is found to have a tendency to appearing in the stress raisers of the twin grain boundaries. The lowest formation energy under Zn-rich condition is only 0.52 eV for the complex in GB7a, a type of ∑7 twin grain boundary with anion-anion bonds, while the value is 3.25 eV for the complex in bulk ZnO. For the ionization energy, the complex in GB7a is more easily ionized, and has a value of 0.38 eV, compared with 0.67 eV in bulk ZnO. The result of density of states shows that the electron transition is dominated by the empty defect levels in forbidden band, which are occupied by O 2p and N 2p orbital. Further analysis indicates that the special structure of GB7a shortens the distances between NO and its neighbor O atoms, and the shortest N–O bond is only 2.38 Å, which also means a strong orbital hybridization between O and N. As a result, the energy level splitting is enhanced, and the empty energy level in the forbidden band is shifted down to valence band maximum. So, GB7a can favor the ionization in VZn-NO-H complex. Although GB7a is a special case of the twin grain boundaries, the result also gives us a new idea to understand the origin of p-type conductivity in N-doped ZnO.
      通信作者: 龙飞, xtang@glut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11364009)和广西自然科学基金(批准号:2014GXNSFFA118004)资助的课题.
      Corresponding author: Long Fei, xtang@glut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11364009) and Guangxi Natural Science Foundation of China (Grant No.2014GXNSFFA118004).
    [1]

    özgr U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doöan S, Avrutin V, Cho S J, Morkoö H 2005 J. Appl. Phys. 98 041301

    [2]

    Fons P, Niki S, Kolobov A V, Ohkubo M, Tominaga J, Friedrich S, Carboni R, Boscherini F 2006 Nucl. Instrum. Methods Phys. Res. B 246 75

    [3]

    Chen L J, Li W X, Dai J F, Wang Q 2014 Acta Phys. Sin. 63 196101 (in Chinese)[陈立晶, 李维学, 戴剑锋, 王青 2014 63 196101]

    [4]

    Tarun M C, Iqbal M Z, McCluskey M D 2011 AIP Adv. 1 022105

    [5]

    Gao J, Zhang X, Sun Y, Zhao Q, Yu D 2010 Nanotechnology 21 245703

    [6]

    Li X, Yan Y, Gessert T A, Perkins C L, Young D, DeHart C, Young M, Coutts T J 20031342

    [7]

    Lim L Y, Lany S, Chang Y J, Rotenberg E, Zunger A, Toney M F 2012 Phys. Rev. B 86 235113

    [8]

    Reynolds J G, Reynolds C L, Mohanta A, Muth J F, Rowe J E, Everitt H O, Aspnes D E 2013 Appl. Phys. Lett. 102 152114

    [9]

    Yang T Y, Kong C Y, Ruan H B, Qin G P, Li W J, Liang W W, Meng X D, Zhao Y H, Fang L, Cui Y T 2013 Acta Phys. Sin. 62 037703 (in Chinese)[杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 催玉亭 2013 62 037703]

    [10]

    Wang N, Kong C Y, Zhu R J, Qin G P, Dai T L, Nan M, Ruan H B 2007 Acta Phys. Sin. 56 5974 (in Chinese)[王楠, 孔春阳, 朱仁江, 秦国平, 戴特力, 南貌, 阮海波 2007 56 5974]

    [11]

    Tang K, Zhu S, Xu Z, Ye J, Gu S 2017 J. Alloys Compd. 696 590

    [12]

    Sun J W, Lu Y M, Liu Y C, Shen D Z, Zhang Z Z, Li B H, Zhang J Y, Yao B, Zhao D X, Fan X W 2006 Solid State Commun. 140 345

    [13]

    Amini M N, Saniz R, Lamoen D, Partoens B 2015 Phys. Chem. Chem. Phys. 17 5485

    [14]

    Domingos H S, Carlsson J M, Bristowe P D, Hellsing B 2004 Interface Sci. 12 227

    [15]

    Erhart P, Klein A, Albe K 2005 Phys. Rev. B 72 085213

    [16]

    Zhang C Y, Li X M, Gao X D, Zhao J L, Wan K S, Bian J M 2006 Chem. Phys. Lett. 420 448

    [17]

    Lahmer M A, Guergouri K 2015 Mater. Sci. Semicond. Process. 39 148

    [18]

    Tahir N, Karim A, Persson K A, Hussain S T, Cruz A G, Usman M, Naeem M, Qiao R, Yang W, Chuang Y D, Hussain Z 2013 J. Phys. Chem. C 117 8968

    [19]

    Wang B, Min J, Zhao Y, Sang W, Wang C 2009 Appl. Phys. Lett. 94 192101

    [20]

    Körner W, Bristowe P D, Elsösser C 2011 Phys. Rev. B 84 045305

    [21]

    Li Y H, Xia Q, Guo S K, Ma Z Q, Gao Y B, Gong X G, Wei S H 2015 J. Appl. Phys. 118 045708

    [22]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202

    [23]

    Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314

    [24]

    Hou Q Y, L Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102 (in Chinese)[侯清玉, 吕致远, 赵春旺 2014 63 197102]

    [25]

    Hou Q Y, Wu Y, Zhao C W 2014 Acta Phys. Sin. 63 137201 (in Chinese)[侯清玉, 乌云, 赵春旺 2014 63 137201]

    [26]

    Xu Z C, Hou Q Y 2015 Acta Phys. Sin. 64 157101 (in Chinese)[许镇潮, 侯清玉 2015 64 157101]

    [27]

    Bang J, Sun Y Y, West D, Meyer B K, Zhang S 2015 J. Mater. Chem. C 3 339

    [28]

    Agapito L A, Curtarolo S, Buongiorno Nardelli M 2015 Phys. Rev. X 5 011006

    [29]

    Walsh A, Da Silva J L, Wei S H 2008 Phys. Rev. Lett. 100 256401

    [30]

    Ma X, Wu Y, L Y, Zhu Y 2013 J. Phys. Chem. C 117 26029

    [31]

    Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese)[曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 65 157201]

    [32]

    Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese)[侯清玉, 董红英, 马文, 赵春旺 2013 62 157101]

    [33]

    Limpijumnong S, Li X, Wei S H, Zhang S B 2005 Appl. Phys. Lett. 86 211910

    [34]

    Li B S, Feng C, Cui Y X 2010 Chin. Phys. Lett. 27 017102

    [35]

    Li H, Schirra L K, Shim J, Cheun H, Kippelen B, Monti O L A, Bredas J L 2012 Chem. Mater. 24 3044

    [36]

    Lide D R 2014 CRC Handbook of Chemistry and Physics (95th Ed.) (USA:CRC Press)

    [37]

    Liu L, Xu J, Wang D, Jiang M, Wang S, Li B, Zhang Z, Zhao D, Shan C X, Yao B, Shen D Z 2012 Phys. Rev. Lett. 108 215501

    [38]

    Yong D Y, He H Y, Tang Z K, Wei S H, Pan B C 2015 Phys. Rev. B 92 235207

  • [1]

    özgr U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doöan S, Avrutin V, Cho S J, Morkoö H 2005 J. Appl. Phys. 98 041301

    [2]

    Fons P, Niki S, Kolobov A V, Ohkubo M, Tominaga J, Friedrich S, Carboni R, Boscherini F 2006 Nucl. Instrum. Methods Phys. Res. B 246 75

    [3]

    Chen L J, Li W X, Dai J F, Wang Q 2014 Acta Phys. Sin. 63 196101 (in Chinese)[陈立晶, 李维学, 戴剑锋, 王青 2014 63 196101]

    [4]

    Tarun M C, Iqbal M Z, McCluskey M D 2011 AIP Adv. 1 022105

    [5]

    Gao J, Zhang X, Sun Y, Zhao Q, Yu D 2010 Nanotechnology 21 245703

    [6]

    Li X, Yan Y, Gessert T A, Perkins C L, Young D, DeHart C, Young M, Coutts T J 20031342

    [7]

    Lim L Y, Lany S, Chang Y J, Rotenberg E, Zunger A, Toney M F 2012 Phys. Rev. B 86 235113

    [8]

    Reynolds J G, Reynolds C L, Mohanta A, Muth J F, Rowe J E, Everitt H O, Aspnes D E 2013 Appl. Phys. Lett. 102 152114

    [9]

    Yang T Y, Kong C Y, Ruan H B, Qin G P, Li W J, Liang W W, Meng X D, Zhao Y H, Fang L, Cui Y T 2013 Acta Phys. Sin. 62 037703 (in Chinese)[杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 催玉亭 2013 62 037703]

    [10]

    Wang N, Kong C Y, Zhu R J, Qin G P, Dai T L, Nan M, Ruan H B 2007 Acta Phys. Sin. 56 5974 (in Chinese)[王楠, 孔春阳, 朱仁江, 秦国平, 戴特力, 南貌, 阮海波 2007 56 5974]

    [11]

    Tang K, Zhu S, Xu Z, Ye J, Gu S 2017 J. Alloys Compd. 696 590

    [12]

    Sun J W, Lu Y M, Liu Y C, Shen D Z, Zhang Z Z, Li B H, Zhang J Y, Yao B, Zhao D X, Fan X W 2006 Solid State Commun. 140 345

    [13]

    Amini M N, Saniz R, Lamoen D, Partoens B 2015 Phys. Chem. Chem. Phys. 17 5485

    [14]

    Domingos H S, Carlsson J M, Bristowe P D, Hellsing B 2004 Interface Sci. 12 227

    [15]

    Erhart P, Klein A, Albe K 2005 Phys. Rev. B 72 085213

    [16]

    Zhang C Y, Li X M, Gao X D, Zhao J L, Wan K S, Bian J M 2006 Chem. Phys. Lett. 420 448

    [17]

    Lahmer M A, Guergouri K 2015 Mater. Sci. Semicond. Process. 39 148

    [18]

    Tahir N, Karim A, Persson K A, Hussain S T, Cruz A G, Usman M, Naeem M, Qiao R, Yang W, Chuang Y D, Hussain Z 2013 J. Phys. Chem. C 117 8968

    [19]

    Wang B, Min J, Zhao Y, Sang W, Wang C 2009 Appl. Phys. Lett. 94 192101

    [20]

    Körner W, Bristowe P D, Elsösser C 2011 Phys. Rev. B 84 045305

    [21]

    Li Y H, Xia Q, Guo S K, Ma Z Q, Gao Y B, Gong X G, Wei S H 2015 J. Appl. Phys. 118 045708

    [22]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202

    [23]

    Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314

    [24]

    Hou Q Y, L Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102 (in Chinese)[侯清玉, 吕致远, 赵春旺 2014 63 197102]

    [25]

    Hou Q Y, Wu Y, Zhao C W 2014 Acta Phys. Sin. 63 137201 (in Chinese)[侯清玉, 乌云, 赵春旺 2014 63 137201]

    [26]

    Xu Z C, Hou Q Y 2015 Acta Phys. Sin. 64 157101 (in Chinese)[许镇潮, 侯清玉 2015 64 157101]

    [27]

    Bang J, Sun Y Y, West D, Meyer B K, Zhang S 2015 J. Mater. Chem. C 3 339

    [28]

    Agapito L A, Curtarolo S, Buongiorno Nardelli M 2015 Phys. Rev. X 5 011006

    [29]

    Walsh A, Da Silva J L, Wei S H 2008 Phys. Rev. Lett. 100 256401

    [30]

    Ma X, Wu Y, L Y, Zhu Y 2013 J. Phys. Chem. C 117 26029

    [31]

    Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese)[曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 65 157201]

    [32]

    Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese)[侯清玉, 董红英, 马文, 赵春旺 2013 62 157101]

    [33]

    Limpijumnong S, Li X, Wei S H, Zhang S B 2005 Appl. Phys. Lett. 86 211910

    [34]

    Li B S, Feng C, Cui Y X 2010 Chin. Phys. Lett. 27 017102

    [35]

    Li H, Schirra L K, Shim J, Cheun H, Kippelen B, Monti O L A, Bredas J L 2012 Chem. Mater. 24 3044

    [36]

    Lide D R 2014 CRC Handbook of Chemistry and Physics (95th Ed.) (USA:CRC Press)

    [37]

    Liu L, Xu J, Wang D, Jiang M, Wang S, Li B, Zhang Z, Zhao D, Shan C X, Yao B, Shen D Z 2012 Phys. Rev. Lett. 108 215501

    [38]

    Yong D Y, He H Y, Tang Z K, Wei S H, Pan B C 2015 Phys. Rev. B 92 235207

  • [1] 王胜, 陈晶晶, 翁盛槟. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究.  , 2022, 71(2): 029601. doi: 10.7498/aps.71.20211305
    [2] 陈晶晶. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究.  , 2021, (): . doi: 10.7498/aps.70.20211305
    [3] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响.  , 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [4] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究.  , 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [5] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响.  , 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [6] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒.  , 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [7] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性.  , 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [8] 邵铮铮, 王晓峰, 张学骜, 常胜利. 原子力显微技术研究ZnO纳米棒的压电放电特性.  , 2010, 59(1): 550-554. doi: 10.7498/aps.59.550
    [9] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究.  , 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [10] 严国清, 谢凯旋, 莫仲荣, 路忠林, 邹文琴, 王申, 岳凤娟, 吴镝, 张凤鸣, 都有为. 共沉淀法制备Co掺杂ZnO的室温铁磁性的研究.  , 2009, 58(2): 1237-1241. doi: 10.7498/aps.58.1237
    [11] 崔秀芝, 张天冲, 梅增霞, 刘章龙, 刘尧平, 郭阳, 苏希玉, 薛其坤, 杜小龙. 湿法刻蚀对Si基片孔点阵及ZnO外延薄膜周期形貌的影响.  , 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [12] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究.  , 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [13] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [14] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应.  , 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [15] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究.  , 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [17] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究.  , 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [18] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究.  , 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [19] 刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战. 固相反应法制备Co掺杂ZnO的磁性和光学性能研究.  , 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [20] 袁洪涛, 张 跃, 谷景华. 原位生长高度定向ZnO晶须.  , 2004, 53(2): 646-650. doi: 10.7498/aps.53.646
计量
  • 文章访问数:  6851
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-24
  • 修回日期:  2017-05-04
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map