搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究

段华 李剑锋 张红东

引用本文:
Citation:

二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究

段华, 李剑锋, 张红东

Theoretical simulations of deformation coupling with phase separation of two-component charged vesicles in a two-dimensional plane

Duan Hua, Li Jian-Feng, Zhang Hong-Dong
PDF
导出引用
  • 结合离散空间变分方法和耗散动力学研究了二维两组分带电囊泡的形变耦合相分离,系统地考察了囊泡带电量组分含量、带电组分的电荷密度、两组分间的相容性和温度等因素对形变耦合相分离动力学的影响.模拟结果表明电荷引入可增加不同组分间的表观相溶性.当温度较高时,静电相互作用可直接抑制囊泡相分离,避免了同种组分的团聚;当温度较低时,静电相互作用则可明显增加分相相区数目,使其呈微观相分离,从而避免了同种组分大范围的团聚.
    The real bio-membranes are of multi-component, and they usually carry a certain quantity of charges. Therefore, it is of great biological significance to study charged multicomponent vesicles. However, the charged multi-component vesicles have been not yet systematically studied due mainly to the following two reasons: first, there are too many factors that will influence the behaviors of charged multi-component vesicles; second, theoretically it is difficult to deal with the phase separation of the multiple components from the Coulomb interaction of charged components at the same time. This work shows that the combination of the discrete-spatial variational method and dissipative dynamics can be used to address the above issues. For simplicity, we will consider only the deformation coupled with the phase separation of two-component charged vesicles in a two-dimensional plane rather than in three-dimensional space, which can present us more systematic research results. Besides, we have not considered the screening effects of counter ions or salts in this work, or equivalently we consider only the case where the screening length is relatively big. The charged vesicle is composed of two components A and B, where component A is negatively charged while component B is neutral. In particular, the charges on the vesicle can freely move in the membrane, which may be described by a time-dependent Ginzburg Landau equation. Initially, the two components are uniformly distributed on the vesicle.In this work, we specially focus on the influence of the electrostatic interaction on the compatibility of different components. It is found that introduction of charges will promote the apparent miscibility between different components. This could explain that the electrostatic interactions may contribute to the increase of the compatibility of different biomolecules in biological system. When temperature is relatively high, the electrostatic interaction will completely inhibit the phase separation which actually prevents the same component from being clustered. When temperature is relatively low, the electrostatic interaction will increase the number of phase domains, which actually turns the original macro phase separation into the micro one, thus reducing the cluster size. In this work, we also systematically study the influences of other factors, such as temperature, charge density of charged components, and the averaged concentration of charged component, on the final configuration of charged multicomponent vesicle. In particular, a phase diagram of the temperature and the averaged concentration of the charged component is obtained, and it is found that the number of phase domains will increase with the increase of charge density of component A. These conclusions are also qualitatively applicable to three-dimensional two-component charged vesicles.
      Corresponding author: Li Jian-Feng, lijf@fudan.edu.cn;zhanghd@fudan.edu.cn ; Zhang Hong-Dong, lijf@fudan.edu.cn;zhanghd@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21474021, 21574028, 21534002).
    [1]

    Ouyang Z C, Helfrich W 1987 Phys. Rev. Lett. 59 2486

    [2]

    Lim H W G, Wortis M, Mukhopadhyay R 2002 Proc. Natl. Acad. Sci. USA 99 16766

    [3]

    Mukhopadhyay R, Gerald L H W, Wortis M 2002 Biophys. J. 82 1756

    [4]

    Yang F Y, Halidan J M H, Jiang Z Y 2014 J. Atom. Mol. Phys. 31 677 (in Chinese) [杨方源, 哈丽旦 居马汗, 蒋中英 2014 原子与分子 31 677]

    [5]

    Li J F, Zhang H D, Qiu F 2013 J. Phys. Chem. B 117 843

    [6]

    Liang X Y, Li L, Qiu F, Yang Y L 2010 Physica A 389 3965

    [7]

    Li L, Liang X Y, Lin M Y, Qiu F, Yang Y L 2005 J. Am. Chem. Soc. 127 17996

    [8]

    Lipowsky R 1992 J. de Physique Ⅱ 2 1825

    [9]

    Jlicher F, Lipowsky R 1993 Phys. Rev. Lett. 70 2964

    [10]

    Leibler S 1986 J. Phys. 47 507

    [11]

    Seifert U 1993 Phys. Rev. Lett. 70 1335

    [12]

    Jrgensen K, Klinger A, Raiman M, Biltonen R L 1996 J. Phys. Chem. 100 2766

    [13]

    Jrgensen K, Mouritsen O G 1999 Thermochim. Acta 328 81

    [14]

    Sunil-Kumar P B, Gompper G, Lipowsky R 2001 Phys. Rev. Lett. 86 3911

    [15]

    Yamamoto S, Hyodo S 2003 J. Chem. Phys. 118 7937

    [16]

    Laradji M, Sunil Kumar P B 2004 Phys. Rev. Lett. 93 198105

    [17]

    Taniguchi T 1996 Phys. Rev. Lett. 76 4444

    [18]

    Sinha K P, Thaokar R M 2016 Eur. Phys. J. E 39 73

    [19]

    Li J F, Zhang H D, Qiu F, Yang Y L, Chen J Z Y 2015 Soft Matter 11 1788

    [20]

    Ito H, Higuchi Y J 2016 Phys. Rev. E 94 042611

    [21]

    Li J F, Zhang H D, Qiu F, Yang Y L 2005 Acta Phys. Sin. 54 4000 (in Chinese) [李剑锋, 张红东, 邱枫, 杨玉良 2005 54 4000]

    [22]

    Li J F, Zhang H D, Qiu F, Shi A C 2013 Phys. Rev. E 88 012719

    [23]

    Guo K K 2005 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [郭坤琨 2005 博士学位论文 (上海: 复旦大学)]

    [24]

    Li J F, Zhang H D, Tang P, Qiu F, Yang Y L 2006 Macromol. Theory Simul. 15 432

    [25]

    Xia B K, Li J F, Li W H, Zhang H D, Qiu F 2013 Acta Phys. Sin. 62 248701 (in Chinese) [夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫 2013 62 248701]

    [26]

    Helfrich W 1973 Z. Naturforsch. C 28 693

  • [1]

    Ouyang Z C, Helfrich W 1987 Phys. Rev. Lett. 59 2486

    [2]

    Lim H W G, Wortis M, Mukhopadhyay R 2002 Proc. Natl. Acad. Sci. USA 99 16766

    [3]

    Mukhopadhyay R, Gerald L H W, Wortis M 2002 Biophys. J. 82 1756

    [4]

    Yang F Y, Halidan J M H, Jiang Z Y 2014 J. Atom. Mol. Phys. 31 677 (in Chinese) [杨方源, 哈丽旦 居马汗, 蒋中英 2014 原子与分子 31 677]

    [5]

    Li J F, Zhang H D, Qiu F 2013 J. Phys. Chem. B 117 843

    [6]

    Liang X Y, Li L, Qiu F, Yang Y L 2010 Physica A 389 3965

    [7]

    Li L, Liang X Y, Lin M Y, Qiu F, Yang Y L 2005 J. Am. Chem. Soc. 127 17996

    [8]

    Lipowsky R 1992 J. de Physique Ⅱ 2 1825

    [9]

    Jlicher F, Lipowsky R 1993 Phys. Rev. Lett. 70 2964

    [10]

    Leibler S 1986 J. Phys. 47 507

    [11]

    Seifert U 1993 Phys. Rev. Lett. 70 1335

    [12]

    Jrgensen K, Klinger A, Raiman M, Biltonen R L 1996 J. Phys. Chem. 100 2766

    [13]

    Jrgensen K, Mouritsen O G 1999 Thermochim. Acta 328 81

    [14]

    Sunil-Kumar P B, Gompper G, Lipowsky R 2001 Phys. Rev. Lett. 86 3911

    [15]

    Yamamoto S, Hyodo S 2003 J. Chem. Phys. 118 7937

    [16]

    Laradji M, Sunil Kumar P B 2004 Phys. Rev. Lett. 93 198105

    [17]

    Taniguchi T 1996 Phys. Rev. Lett. 76 4444

    [18]

    Sinha K P, Thaokar R M 2016 Eur. Phys. J. E 39 73

    [19]

    Li J F, Zhang H D, Qiu F, Yang Y L, Chen J Z Y 2015 Soft Matter 11 1788

    [20]

    Ito H, Higuchi Y J 2016 Phys. Rev. E 94 042611

    [21]

    Li J F, Zhang H D, Qiu F, Yang Y L 2005 Acta Phys. Sin. 54 4000 (in Chinese) [李剑锋, 张红东, 邱枫, 杨玉良 2005 54 4000]

    [22]

    Li J F, Zhang H D, Qiu F, Shi A C 2013 Phys. Rev. E 88 012719

    [23]

    Guo K K 2005 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [郭坤琨 2005 博士学位论文 (上海: 复旦大学)]

    [24]

    Li J F, Zhang H D, Tang P, Qiu F, Yang Y L 2006 Macromol. Theory Simul. 15 432

    [25]

    Xia B K, Li J F, Li W H, Zhang H D, Qiu F 2013 Acta Phys. Sin. 62 248701 (in Chinese) [夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫 2013 62 248701]

    [26]

    Helfrich W 1973 Z. Naturforsch. C 28 693

  • [1] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离.  , 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] 王晶, 焦阳, 田文得, 陈康. 低惯性与高惯性活性粒子混合体系中的相分离现象.  , 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [3] 刘博阳, 宋文涛, 刘争晖, 孙晓娟, 王开明, 王亚坤, 张春玉, 陈科蓓, 徐耿钊, 徐科, 黎大兵. AlGaN表面相分离的同位微区荧光光谱和高空间分辨表面电势表征.  , 2020, 69(12): 127302. doi: 10.7498/aps.69.20200099
    [4] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟.  , 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [5] 纪丹丹, 张劭光. 三区域膜泡相分离模式之间转变的研究.  , 2018, 67(18): 188701. doi: 10.7498/aps.67.20180828
    [6] 向俊尤, 王志国, 徐宝, 孙运斌, 吴鸿业, 赵建军, 鲁毅. 双层钙钛矿(La1-xGdx)4/3Sr5/3Mn2O7(x=0,0.05)的相分离.  , 2014, 63(15): 157501. doi: 10.7498/aps.63.157501
    [7] 夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫. 基于离散变分原理的耗散动力学模拟方法:模拟三维囊泡形状.  , 2013, 62(24): 248701. doi: 10.7498/aps.62.248701
    [8] 任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静. 调幅分解及形核对相分离作用机理研究.  , 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [9] 王强. Bi0.5Ca0.5Mn1-xCoxO3体系中的电荷有序和相分离.  , 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [10] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究.  , 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [11] 张成国, 章晓中. La1-xCaxMnO3(x≤1/3)中Ca掺杂的团簇化及其稳定性.  , 2008, 57(11): 7126-7131. doi: 10.7498/aps.57.7126
    [12] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究.  , 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [13] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象.  , 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [14] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究.  , 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [15] 王瑞敏, 陈光德, 竹有章. 六方相InGaN外延膜的显微Raman散射.  , 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [16] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究.  , 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [17] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长.  , 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [18] 李剑锋, 张红东, 邱 枫, 杨玉良. 模拟囊泡形变动力学的新方法离散空间变分法.  , 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
    [19] 张华力, 刘 卫, 李栋才, 吴修胜, 陈初升. La2NiO4+δ体系相分离现象的低频内耗研究.  , 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [20] 冯文强, 诸跃进. 外噪声场对二元混合物相分离的驱动作用.  , 2004, 53(11): 3690-3694. doi: 10.7498/aps.53.3690
计量
  • 文章访问数:  6236
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-28
  • 修回日期:  2017-10-28
  • 刊出日期:  2018-02-05

/

返回文章
返回
Baidu
map