搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期驱动的二能级系统中的准宇称-时间对称动力学

胡洲 曾招云 唐佳 罗小兵

引用本文:
Citation:

周期驱动的二能级系统中的准宇称-时间对称动力学

胡洲, 曾招云, 唐佳, 罗小兵

Quasi-Parity-Time symmetric dynamics in a periodcially driven two-level non-Hermitian system

Hu Zhou, Zeng Zhao-Yun, Tang jia, Luo Xiao-bing
PDF
导出引用
  • 本文研究了一个周期驱动的非宇称-时间对称二能级量子系统的非厄米动力学。通过经典相空间分析方法,解出了该非厄米系统的Floquet态和准能谱,并解析构造了由该非厄米哈密顿量支配下的量子态的非幺正时间演化算符,给出了不同参数区域的量子态演化。本文数值和分析证明,该非宇称-时间对称二能级Floquet系统,类似于宇称-时间对称系统,存在一个准能谱从实数谱到复数谱的相变。本文还揭示了在量子态的动态演化中存在一种准宇称-时间对称动力学,即,该系统的粒子布居概率演化完全满足时间空间对称(宇称-时间对称),但是由于相位演化违反了宇称-时间对称性的要求,因此包含相位信息的量子态演化不满足时间空间对称(宇称-时间对称)。这些结果加深了对非厄米物理的理解,拓展和推广了传统的宇称-时间对称概念。
    In recent years, there have been intensive studies on non-Hermitian physics and parity-time (PT) symmetry, due to their fundamental importance in theory and outstanding applications. A distinctive character in PT-symmetric systems is phase transition (spontaneous PT-symmetry breaking), where the energy spectrum changes from all real to complex when the non-Hermitian parameter exceeds a certain threshold. However, the conditions for PT-symmetric system with real energy spectrum to occur are rather restrictive. Generalization of PT-symmetric potentials to wider classes of non-PT-symmetric complex potentials with all-real spectra is a currently important endeavor. The simple PT-symmetric two-level Floquet quantum system is now being actively explored, because it holds potential for realization of non-unitary single-qubit quantum gate. However, studies on the evolution dynamics of non-PT-symmetric two-level non-Hermitian Floquet quantum system still remain relatively rare.
    In this paper, we investigate the non-Hermitian physics of a periodically driven non-PT-symmetric two-level quantum system. By phase-space analysis, we find that there exist so-called pseudo fixed points in phase space representing the Floquet solutions with fixed population difference and a time-dependent relative phase between the two levels. Based on these pseudo fixed points, we analytically construct the non-unitary evolution operator and then explore the dynamics of the non-PT-symmetric two-level quantum system in different parameter regions. We confirm both analytically and numerically that the two-level non-Hermitian Floquet quantum system, although being non-parity-time-symmetric, still features a phase transition with the quasienergy spectrum changing from all real to complex, just as for PT symmetric systems. Furthermore, we reveal that a novel phenomenon called quasi-PT symmetric dynamics occurs in the time evolution process. The quasi-PT symmetric dynamics is so named in our paper, in the sense that the time-evolution of population probabilities in the non-PT-symmetric two-level system respects fully the time-space symmetry (PT symmetry), while time-evolution of the quantum state (containing the phase) does not, due to the fact that time-evolution of the phases of the probability amplitudes on the two levels violates the PT symmetry requirement.
  • [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [2]

    Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V,Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902

    [3]

    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192

    [4]

    Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N, Rotter S 2016 Nature (London)537 76

    [5]

    Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G Lu, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394

    [6]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photonics 8 524

    [7]

    Bender C M, Berntson B K, Parker D, Samuel E 2013 Am. J. Phys. 81 173

    [8]

    Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(R)

    [9]

    Fleury R, Sounas D, Alù A, Nat. Commun. 2015 6 5905

    [10]

    Liu T, Zhu X, Chen F, Liang S, Zhu J 2018 Phys. Rev. Lett. 120 124502

    [11]

    Tang J S, Wang Y T, Yu S, He D Y, Xu J S, Liu B H, Chen G, Sun Y N, Sun K, Han Y J, Li C F, Guo G C 2016 Nat. Photonics 10 642

    [12]

    Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C, Xue P 2017 Nat. Phys. 13 1117

    [13]

    Gao W C, Zheng C, Liu L, Wang T J, Wang C 2021 Optics Express 29 517

    [14]

    Li J, Harter A K, Liu J, Melo L de, Joglekar Y N, Luo L 2019 Nat. Com. 10 855

    [15]

    Zhang D K, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat.Com. 8 1368

    [16]

    Wu Y, Liu W, Geng J, Song X, Ye X, Duan C K, Rong X, Dun J 2019 Science 364 878

    [17]

    Zheng C, Hao L, Long G L 2013 Philos. Trans. R. Soc., A 371 20120053

    [18]

    Wen J, Zheng C, Kong X, Wei S, Xin T, Long G 2019 Phys. Rev. A 99 062122

    [19]

    Wang W C, Zhou Y L, Zhang H L, Zhang J, Zhang M C, Xie Y, Wu C W, Chen T, Ou B Q, Wu W, Jing H, Chen P X 2021 Phys. Rev. A 103 L020201

    [20]

    Ding L, Shi K, Zhang Q, Shen D, Zhang X, Zhang W 2021 Phys. Rev. Lett. 126 083604

    [21]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901

    [22]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature (London)488 167

    [23]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108

    [24]

    Sun Y, Tan W, Li H Q, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903

    [25]

    Jin L, Song Z 2018 Phys. Rev. Lett. 121 073901

    [26]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature (London)548 187

    [27]

    Yu S, Meng Y, Tang J, Xu X, Wang Y, Yin P, Ke Z, Liu W, Li Z, Yang Y, Chen G, Han Y, Li C, Guo G 2020 Phys. Rev. Lett. 125 240506

    [28]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972

    [29]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975

    [30]

    Assawaworrarit S, Yu X, Fan S 2017 Nature (London)546 387

    [31]

    Xu H, Mason D, Jiang L, Harris J G E 2016 Nature (London)537 80

    [32]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 27 270401

    [33]

    Bender C M 2007 Rep. Prog. Phys. 70 947

    [34]

    Mostafazadeh A 2002 J. Math. Phys. 43 205

    [35]

    Mostafazadeh A 2002 J. Math. Phys. 43 2814

    [36]

    Nixon S, Yang J 2016 Phys. Rev. A 93 031802(R)

    [37]

    Hang C, Gabadadze G, Huang G 2017 Phys. Rev. A 95 023833

    [38]

    Pan J, Zhou L 2020 Phys. Rev. B 102 094305

    [39]

    Luo X B, Huang J H, Zhong H H, Qin X Z, Xie Q T, Kivshar Y S, Lee C H 2013 Phys. Rev. Lett. 110 243902

    [40]

    Chitsazi M, Li H, Ellis F M, Kottos T 2017 Phys. Rev. Lett. 119 093901

    [41]

    Duan L, Wang Y, Chen Q 2020 Chin. Phys. Lett 37 081101

    [42]

    Xie Q, Rong S and Liu X 2018 Phys. Rev. A 98 052122

    [43]

    Koutserimpas T T, Alù A, Fleury R 2018 Phys. Rev. A 97 013839

    [44]

    Luo X B, Wu D, Luo S, Guo Y, Yu X, Hu Q 2014 J. Phys. A:Math. Theor. 47 345301

    [45]

    Yang B, Luo X B, Hu Q, Yu X 2016 Phys. Rev. A 94 043828

    [46]

    Luo X B, Yang B, Zhang X-F, Li L, Yu X 2017 Phys. Rev. A 95 052128

    [47]

    Cui B, Wang L C, Yi X X 2010 Phys. Rev. A 82 062105

    [48]

    Liu Z P, Zhang J, Özdemir Ş K, Peng B, Jing H, Lü X Y, Li C W, Yang L, Nori F, Liu Y 2016 Phys. Rev. Lett. 117 110802

    [49]

    Bender C M, Brody D C, Jones H F, Meister B K 2007 Phys. Rev. Lett. 98 040403

  • [1] 谭超, 梁勇, 邹敏, 雷同, 陈龙, 唐平华, 刘明伟. 基于不同变系数和势场的分数系统中二次相位调控厄米-高斯光束动力学.  , doi: 10.7498/aps.73.20240427
    [2] 江翠, 李家锐, 亓迪, 张莲莲. 具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响.  , doi: 10.7498/aps.73.20240871
    [3] 王利凯, 王宇倩, 郭志伟, 江海涛, 李云辉, 羊亚平, 陈鸿. 基于高阶非厄密物理的磁共振无线电能传输研究进展.  , doi: 10.7498/aps.73.20241079
    [4] 张光成, 孙武, 周志鹏, 全秀娥, 叶伏秋. 周期调制四通道光学波导的宇称-时间对称特性调控和动力学研究.  , doi: 10.7498/aps.73.20240690
    [5] 蒋宏帆, 林机, 胡贝贝, 张肖. 非宇称时间对称耦合器中的非局域孤子.  , doi: 10.7498/aps.72.20230082
    [6] 徐灿鸿, 许志聪, 周子榆, 成恩宏, 郎利君. 非厄米格点模型的经典电路模拟.  , doi: 10.7498/aps.72.20230914
    [7] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展.  , doi: 10.7498/aps.71.20221825
    [8] 邓天舒. 畴壁系统中的非厄米趋肤效应.  , doi: 10.7498/aps.71.20221087
    [9] 侯博, 曾琦波. 非厄米镶嵌型二聚化晶格.  , doi: 10.7498/aps.71.20220890
    [10] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性.  , doi: 10.7498/aps.71.20220511
    [11] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性.  , doi: 10.7498/aps.70.20220511
    [12] 张禧征, 王鹏, 张坤亮, 杨学敏, 宋智. 非厄米临界动力学及其在量子多体系统中的应用.  , doi: 10.7498/aps.71.20220914
    [13] 范辉颖, 罗杰. 非厄密电磁超表面研究进展.  , doi: 10.7498/aps.71.20221706
    [14] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控.  , doi: 10.7498/aps.71.20220456
    [15] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展.  , doi: 10.7498/aps.71.20221323
    [16] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学.  , doi: 10.7498/aps.70.20220270
    [17] 孙孔浩, 易为. 非厄米局域拓扑指标的动力学特性.  , doi: 10.7498/aps.70.20211576
    [18] 张毅, 金世欣. 含时滞的非保守系统动力学的Noether对称性.  , doi: 10.7498/aps.62.234502
    [19] 车俊岭, 张好, 冯志刚, 张临杰, 赵建明, 贾锁堂. 70S超冷Cs Rydberg原子的动力学演化.  , doi: 10.7498/aps.61.043205
    [20] 王晓芹, 周立友, 逯怀新. 含时谐振子的动力学演化.  , doi: 10.7498/aps.57.6736
计量
  • 文章访问数:  2903
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 上网日期:  2022-03-19

/

返回文章
返回
Baidu
map