搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定向结晶条件下聚乙二醇6000的强动力学效应

田丽丽 王楠 彭银利 姚文静

引用本文:
Citation:

定向结晶条件下聚乙二醇6000的强动力学效应

田丽丽, 王楠, 彭银利, 姚文静

Strong kinetic effect of polyethylene glycol 6000 under directional solidification condition

Tian Li-Li, Wang Nan, Peng Yin-Li, Yao Wen-Jing
PDF
导出引用
  • 在单向温度场条件下, 采用不同抽拉速度实现了聚乙二醇6000的定向生长、界面形貌的实时观测及界面温度的测量, 进而揭示了其生长机制. 实验结果表明, 随着抽拉速度的增大, 界面的温度逐渐减小, 过冷度逐渐增大. 运用高聚物结晶的次级形核理论模型, 对实验数据进行了计算, 得到在界面过冷度为13.5 K左右时, 生长机制发生了由区域Ⅱ向区域Ⅲ的转变. 实验数据与等温结晶数据的比较发现等温结晶方法中获得过冷度相对较大, 是因为其包含了热过冷. 聚乙二醇6000定向结晶过程中需要的最大动力学过冷度为20 K, 说明由于高聚物的二维形核, 其生长主要由界面动力学控制, 具有较强的动力学效应.
    Interface characterizes describes how the atoms/molecules attach themselves to the solid/liquid interface from the liquid when the crystallization takes place, which plays a key role in revealing the kinetic mechanism during the crystal growth. For common non-facet/non-facet metallic systems, the kinetic undercooling is usually small and it becomes only significant when the growth velocity is high. However, high growth velocity can be usually realized under large undercooling condition. In this case, the interface temperature cannot be measured, thus the kinetic undercooling cannot be determined quantitatively either. Compared with the atom and small molecule materials, the polymer has its distinctive characteristic of different long chains, which are entangled together in a liquid state. Thus the crystallization of the polymer system usually proceeds in the two-dimensional manner, which provides an ideal way to obtain large kinetic undercooling under the small growth velocity condition. The directional crystallization technique has been widely adopted to study the scaling law of undercooling and growth velocity due to its accurate controlling of growth velocity and temperature gradient. Therefore, it offers an appropriate way to make a quantitative investigation. In this paper, the in-situ observations of the solidification of polyethylene glycol 6000 at different pulling velocities are performed and the interface temperature is examined as well by using the directional crystallization technique. The effect of the pulling rate on the growth kinetics is examined. The results reveal that the interface temperature decreases and the undercooling increases gradually with the pulling velocity increasing. A change in the growth regime is observed at T=13.5 K, where regime Ⅱ-regime Ⅲ transition occurs according to Hoffman's kinetic theory of polymer crystallization. The comparison of undercooling between the present work and DSC isothermal crystallization is made, and it shows that the data obtained in the directional growth and the isothermal growth follow the same trends but the undercooling in isothermal growth is larger than in directional growth under the same growth velocity. This indicates that the undercooling in the latter case is over-estimated since it contains the thermal undercooling. Undercooling is the driving force for crystallization, which usually includes solute undercooling, curvature undercooling, thermal undercooling, and kinetic undercooling. Because of the flat interface and the pure material, there is no solute undercooling nor curvature cooling in the present case. The thermal undercooling is also zero in the unidirectional crystallization process. Thus the total undercooling in the present work is the kinetic undercooling. The maximum kinetic undercooling reaches 20 K, indicating that the interface kinetic controlling growth takes place due to the two-dimensional nucleation in polymer.
      通信作者: 王楠, nan.wang@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51271149) 和航空科学基金(批准号: 2013ZF53080)资助的课题.
      Corresponding author: Wang Nan, nan.wang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51271149) and the National Aerospace Science Foundation of China (Grant No. 2013ZF53080).
    [1]

    Kurz W, Fisher D J 1998 Fundamental of Solidification (Switzerland: Trans. Tech. Pub. Ltd.) pp 28-34

    [2]

    Barth M, Wei B, Herlach D M 1995 Phys. Rev. B 51 3422

    [3]

    Maitra T, Gupta S P 2002 Mater. Charact. 49 293

    [4]

    Suzuki A, Saddock N D, Jones J W, Pollock T M 2005 Acta Mater. 53 2823

    [5]

    Hoffman J D, Davis G T, Lauritzen J I, Hannay N B 1976 Treatise on Solid State Chemistry (New York: Plenum) pp 497-614

    [6]

    Hoffman J D 1983 Polymer 24 3

    [7]

    Hoffman J D 1973 J. Appl. Phys. 44 4430

    [8]

    Turnbull D, Fisher J C 1949 J. Chem. Phys. 17 1949

    [9]

    Monasse B, Haudin J M 1985 Colloid Polym. Sci. 263 822

    [10]

    Lu X F, Hay J N 2001 Polymer 42 9423

    [11]

    Kovacs A J, Straupe C, Gonthier A 1977 J. Polym. Sci. Part C: Polym. Symp. 59 31

    [12]

    Kovacs A J, Gonthier A, Straupe C 1975 J. Polym. Sci. 50 283

    [13]

    Buckley C P, Kovacs A J 1976 Colloid Polym. Sci. 254 695

    [14]

    Mota F L, Bergeon N, Tourret D, Karma A, Trivedi R, Billia B 2015 Acta Metall. 85 362

    [15]

    Fabietti L M, Mazumder P, Trivedi R 2015 Scripta Mater. 97 29

    [16]

    Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 62 218103]

    [17]

    Wang X B, Lin X, Wang L L, Bai B B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 62 108103]

    [18]

    Serefoglu M, Napolitano R E 2011 Acta Mater. 59 1048

    [19]

    Farup I, Drezet J M, Rappaz M 2001 Acta Mater. 49 1261

    [20]

    Bottin R S, Perrut M, Picard C, Akamatsu S, Faivre G 2007 J. Cryst. Growth 306 465

    [21]

    Huang W D, Ding G L, Zhou Y H 1995 Chin. J. Mater. Res. 9 193 (in Chinese) [黄卫东, 丁国陆, 周尧和 1995 材料研究学报 9 193]

    [22]

    Li S M, Du W, Zhang J, Li J S, Liu L, Fu H Z 2002 Acta Metall. Sin. 38 1195 (in Chinese) [李双明, 杜炜, 张军, 李金山, 刘林, 傅恒志 2002 金属学报 38 1195]

    [23]

    Lin X, Li T, Wang L L, Su Y P, Huang W D 2004 Acta Phys. Sin. 53 3971 (in Chinese) [林鑫, 李涛, 王琳琳, 苏云鹏, 黄卫东 2004 53 3971]

    [24]

    Huang W D, Lin X, Tao L, Wang L L, Inatomi Y 2004 Acta Phys. Sin. 53 3978 (in Chinese) [黄卫东, 林鑫, 李涛, 王琳琳, Lnatomi Y 2004 53 3978]

    [25]

    Craig D Q M 1995 Thermochim. Acta 248 189

    [26]

    Berlanga R, Sunol J J, Saurina J, Oliveira J 2001 J. Macromol. Sci. Phys. B40 327

    [27]

    Wang N, Gao J R, Wei B 1999 Scripta Mater. 41 959

  • [1]

    Kurz W, Fisher D J 1998 Fundamental of Solidification (Switzerland: Trans. Tech. Pub. Ltd.) pp 28-34

    [2]

    Barth M, Wei B, Herlach D M 1995 Phys. Rev. B 51 3422

    [3]

    Maitra T, Gupta S P 2002 Mater. Charact. 49 293

    [4]

    Suzuki A, Saddock N D, Jones J W, Pollock T M 2005 Acta Mater. 53 2823

    [5]

    Hoffman J D, Davis G T, Lauritzen J I, Hannay N B 1976 Treatise on Solid State Chemistry (New York: Plenum) pp 497-614

    [6]

    Hoffman J D 1983 Polymer 24 3

    [7]

    Hoffman J D 1973 J. Appl. Phys. 44 4430

    [8]

    Turnbull D, Fisher J C 1949 J. Chem. Phys. 17 1949

    [9]

    Monasse B, Haudin J M 1985 Colloid Polym. Sci. 263 822

    [10]

    Lu X F, Hay J N 2001 Polymer 42 9423

    [11]

    Kovacs A J, Straupe C, Gonthier A 1977 J. Polym. Sci. Part C: Polym. Symp. 59 31

    [12]

    Kovacs A J, Gonthier A, Straupe C 1975 J. Polym. Sci. 50 283

    [13]

    Buckley C P, Kovacs A J 1976 Colloid Polym. Sci. 254 695

    [14]

    Mota F L, Bergeon N, Tourret D, Karma A, Trivedi R, Billia B 2015 Acta Metall. 85 362

    [15]

    Fabietti L M, Mazumder P, Trivedi R 2015 Scripta Mater. 97 29

    [16]

    Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 62 218103]

    [17]

    Wang X B, Lin X, Wang L L, Bai B B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 62 108103]

    [18]

    Serefoglu M, Napolitano R E 2011 Acta Mater. 59 1048

    [19]

    Farup I, Drezet J M, Rappaz M 2001 Acta Mater. 49 1261

    [20]

    Bottin R S, Perrut M, Picard C, Akamatsu S, Faivre G 2007 J. Cryst. Growth 306 465

    [21]

    Huang W D, Ding G L, Zhou Y H 1995 Chin. J. Mater. Res. 9 193 (in Chinese) [黄卫东, 丁国陆, 周尧和 1995 材料研究学报 9 193]

    [22]

    Li S M, Du W, Zhang J, Li J S, Liu L, Fu H Z 2002 Acta Metall. Sin. 38 1195 (in Chinese) [李双明, 杜炜, 张军, 李金山, 刘林, 傅恒志 2002 金属学报 38 1195]

    [23]

    Lin X, Li T, Wang L L, Su Y P, Huang W D 2004 Acta Phys. Sin. 53 3971 (in Chinese) [林鑫, 李涛, 王琳琳, 苏云鹏, 黄卫东 2004 53 3971]

    [24]

    Huang W D, Lin X, Tao L, Wang L L, Inatomi Y 2004 Acta Phys. Sin. 53 3978 (in Chinese) [黄卫东, 林鑫, 李涛, 王琳琳, Lnatomi Y 2004 53 3978]

    [25]

    Craig D Q M 1995 Thermochim. Acta 248 189

    [26]

    Berlanga R, Sunol J J, Saurina J, Oliveira J 2001 J. Macromol. Sci. Phys. B40 327

    [27]

    Wang N, Gao J R, Wei B 1999 Scripta Mater. 41 959

  • [1] 罗杨, 陈茂林, 苏冬冬, 许诺, 王忠晶, 韩志聪, 赵豪. 外磁场作用下的磁等离子体动力学过程仿真.  , 2022, 71(5): 055204. doi: 10.7498/aps.71.20211383
    [2] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换.  , 2022, 71(4): 043201. doi: 10.7498/aps.71.20211703
    [3] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究.  , 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [4] 李瑞涛, 唐刚, 夏辉, 寻之朋, 李嘉翔, 朱磊. 二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟.  , 2019, 68(5): 050301. doi: 10.7498/aps.68.20181774
    [5] 丛东亮, 许朋, 王叶兵, 常宏. 锶热原子束二维准直的动力学过程的蒙特卡罗模拟及实验研究.  , 2013, 62(15): 153702. doi: 10.7498/aps.62.153702
    [6] 刘丽霞, 侯兆阳, 刘让苏. 过冷液体钾形核初期微观动力学机理的模拟研究.  , 2012, 61(5): 056101. doi: 10.7498/aps.61.056101
    [7] 王文芳, 陈科, 邬静达, 文锦辉, 赖天树. 长寿命吸收过程对超快动力学过程测量的影响.  , 2011, 60(11): 117802. doi: 10.7498/aps.60.117802
    [8] 陈明文, 倪锋, 王艳林, 王自东, 谢建新. 界面动力学对过冷熔体中球晶生长界面形态的影响.  , 2011, 60(6): 068103. doi: 10.7498/aps.60.068103
    [9] 胡小颖, 周雅君. 光学势在(e, 2e)反应动力学过程的作用.  , 2010, 59(4): 2423-2427. doi: 10.7498/aps.59.2423
    [10] 董力强, 黄世华, 贾晓霞, 陈宝玖. 方波激发下Er3+上转换绿光发光动力学过程的研究.  , 2009, 58(3): 2061-2066. doi: 10.7498/aps.58.2061
    [11] 宁 成, 丁 宁, 刘 全, 杨震华. 双层钨丝阵的Z箍缩动力学过程研究.  , 2006, 55(7): 3488-3493. doi: 10.7498/aps.55.3488
    [12] 黄显宾, 杨礼兵, 顾元朝, 邓建军, 周荣国, 邹 杰, 周少彤, 张思群, 陈光华, 畅里华, 李丰平, 欧阳凯, 李 军, 杨 亮, 王 雄, 张朝辉. 氩气Z箍缩内爆动力学过程实验研究.  , 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [13] 宁 成, 杨震华, 丁 宁. 喷气Z箍缩内爆动力学过程的数值模拟研究.  , 2003, 52(7): 1650-1655. doi: 10.7498/aps.52.1650
    [14] 张凯旺, 袁辉球, 钟建新. 一类非公度体系的电子动力学.  , 1999, 48(3): 497-504. doi: 10.7498/aps.48.497
    [15] 陈魁英, 李庆春. 深过冷液态Mg-Ca合金的微观动力学行为.  , 1993, 42(9): 1491-1498. doi: 10.7498/aps.42.1491
    [16] 刘祖黎, 宋文栋, 魏合林, 李再光. 直流辉光放电等离子体轴向动力学过程的研究.  , 1992, 41(1): 56-61. doi: 10.7498/aps.41.56
    [17] 陈可明, 金高龙, 盛篪, 俞鸣人. Si(111)分子束外延的生长动力学过程研究.  , 1990, 39(12): 1945-1951. doi: 10.7498/aps.39.1945
    [18] 张鹏翔, 潘多海, 傅石友. 利用SERS效应研究表面吸附动力学过程.  , 1989, 38(6): 010300. doi: 10.7498/aps.38.10300
    [19] 周先意, 刘治国, 朱育平, 陈光慧, 陈涌, 张其瑞. 超导金属玻璃Zr78Co22的结晶化动力学研究.  , 1989, 38(6): 931-937. doi: 10.7498/aps.38.931
    [20] 姚玉书, 陈红, 徐济安, 何寿安. 流体静压力下LiIO3晶体β→α相变的动力学过程.  , 1981, 30(6): 835-840. doi: 10.7498/aps.30.835
计量
  • 文章访问数:  6323
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-04
  • 修回日期:  2016-01-05
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map