搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InGaN/GaN超晶格厚度对Si衬底GaN基蓝光发光二极管光电性能的影响

齐维靖 张萌 潘拴 王小兰 张建立 江风益

引用本文:
Citation:

InGaN/GaN超晶格厚度对Si衬底GaN基蓝光发光二极管光电性能的影响

齐维靖, 张萌, 潘拴, 王小兰, 张建立, 江风益

Influences of InGaN/GaN superlattice thickness on the electronic and optical properties of GaN based blue light-emitting diodes grown on Si substrates

Qi Wei-Jing, Zhang Meng, Pan Shuan, Wang Xiao-Lan, Zhang Jian-Li, Jiang Feng-Yi
PDF
导出引用
  • 采用有机金属化学气相沉积技术在Si(111)衬底上生长蓝光多量子阱发光二极管(LED) 结构, 通过在量子阱下方分别插入两组不同厚度的InGaN/GaN超晶格, 比较了超晶格厚度对LED光电性能的影响. 结果显示: 随超晶格厚度增加, 样品的反向漏电流加剧; 300 K下电致发光仪测得随着电流增加, LED发光光谱峰值的蓝移量随超晶格厚度增加而减少, 但不同超晶格厚度的两个样品在300 K下的电致发光强度几乎无差异. 结合高分辨X射线衍射仪、扫描电子显微镜、透射电子显微镜对样品的位错密度和V形坑特征分析, 明确了两样品反向漏电流产生巨大差异的原因是由于超晶格厚度大的样品具有更大的V形坑和V形坑密度, 而V形坑可作为载流子的优先通道, 使超晶格更厚的样品反向漏电流加剧. 通过对样品非对称(105)面附近的X射线衍射倒易空间图分析, 算得超晶格厚度大的样品其InGaN量子阱在GaN上的弛豫度也大, 即超晶格厚度增加有利于减小InGaN量子阱所受的应力. 综合以上影响LED发光效率的消长因素, 导致两样品最终的发光强度相近.
    GaN based light-emitting diodes (LEDs) are subjected to a large polarization-related built-in electric field in c-plane InGaN multiple quantum well (MQW) during growth, which causes the reduction of emission efficiency. To mitigate the electric field, a superlattice layer with a numerous good characteristics, such as a small thickness, a high crystalline quality, is embedded in the epitaxial structure of LED. However, the effect of the superlattice thickness on the properties of LED is not fully understood. In this paper, two blue-LED MQW thin film structures with different thickness values of InGaN/GaN superlattice inserted between n-GaN and MQW, are grown on Si (111) substrates by metal-organic chemical vapor deposition. Electronic and optical properties of the two kinds of samples are investigated. The obtained results are as follows. 1) Comparing two samples, it is observed that more serious reverse-bias leakage current exists in the one with thicker superlattice; 2) Room temperature electroluminescence (EL) measurement shows that the emission spectrum peak between two samples is blue-shifted to different extents as the injection current increases. With superlattice thickness increasing, the extent to which the peak is blue-shifted decreases. Nevertheless, there is no obvious discrepancy in the EL intensity between two samples with different thickness values at 300 K. In addition, the V-shaped pit characteristics including density and size, and the dislocation densities of two samples are studied by high-resolution X-ray diffraction, scanning electron microscope, and transmission electron microscope. The experimental data reveal that the reason for a tremendously different in reverse-bias leakage current between two samples is that there are larger and more V-pits in the superlattice sample with a large thickness. Whereas, V-pits also act as preferential paths for carriers, resulting in the fact that the thicker superlattice suffers more serious reverse-bias leakage current. According to reciprocal space X-ray diffraction intensity around the asymmetrical (105) for GaN measurement, the relaxed degree of InGaN quantum well on GaN is proportional to the superlattice thickness. On the other hand, it is useful for increasing superlattice thickness to reduce a huge stress in c-plane InGaN. Owing to joint effects of above factors, the EL intensities of the superlattice sample with different thickness values are almost identical. Our results show the functions of superlattice thickness in electronic and optical characteristics. What is more, the conclusions obtained in the present research indicate the practical significance for improving the performances of LED.
      通信作者: 张萌, tiegang_zm@sina.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 21405076)资助的课题.
      Corresponding author: Zhang Meng, tiegang_zm@sina.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21405076).
    [1]

    Wierer Jr J J, Koleske D D, Lee S R 2012 Appl. Phys. Lett. 100 111119

    [2]

    Liu L, Wang L, Li D, Liu N Y, Li L, Cao W Y, Yang W, Wan C H, Chen W H, Du W M, Hu X D, Feng Z C 2011 J. Appl. Phys. 109 073106

    [3]

    Kwon S Y, Kim H J, Na H, Kim Y W, Seo H C, Kim H J, Shin Y, Yoon E, Park Y S 2006 J. Appl. Phys. 99 044906

    [4]

    Li T, Wei Q Y, Fischer A M, Huang J Y, Huang Y U, Ponce F A, Liu J P, Lochner Z, Ryou J H, Dupuis R D 2013 Appl. Phys. Lett. 102 041115

    [5]

    Huang C F, Liu T C, Lu Y C, Shiao W Y, Chen Y S, Wang J K, Lu C F, Yang C C 2008 J. Appl. Phys. 104 123106

    [6]

    Xing Y H, Deng J, Han J, Li J J, Shen G C 2009 Acta Phys. Sin. 58 590 (in Chinese) [邢艳辉, 邓军, 韩军, 李建军, 沈光池 2009 58 590]

    [7]

    Tsai C L, Fan G C, Lee Y S 2010 Appl. Phys. A 104 319

    [8]

    Noh Y K, Kim M D, Oh J E 2011 J. Appl. Phys. 110 123108

    [9]

    Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 058502

    [10]

    Kim K S, Kim J H, Jung S J, Park Y J, Cho S N 2010 Appl. Phys. Lett. 96 091104

    [11]

    Zhuo X J, Zhang J, Li D W, Yi H X, Ren Z W, Tong J H, Wang X F, Chen X, Zhao B J, Wang W L, Li S T 2014 Chin. Phys. B 23 068502

    [12]

    Ryu H Y, Choi W J 2013 J. Appl. Phys. 114 173101

    [13]

    Mao Q H, Jiang F Y, Chen H Y, Zheng C D 2010 Acta Phys. Sin. 59 8078 (in Chinese) [毛清华, 江风益, 陈海英, 郑畅达 2010 59 8078]

    [14]

    Wu X M, Liu J L, Xiong C B, Zhang J L, Quan Z J, Mao Q H, Jiang F Y 2013 J. Appl. Phys. 114 103102

    [15]

    Kozodoy P, Ibbetson J P, Marchand H, Fini P T, Keller S, Speck J S, DenBaars S P, Mishra U K 1998 Appl. Phys. Lett. 73 975

    [16]

    Le L C, Zhao D G, Jiang D S, Li L, Wu L L, Chen P, Liu Z S, Yang J, Li X J, He X G, Zhu J J, Wang H, Zhang S M, Yang H 2013 J. Appl. Phys. 114 143706

    [17]

    Heinke H, Kirchner V, Einfeldt S, Hommel D 2000 Appl. Phys. Lett. 77 2145

    [18]

    Gallinat C S, Koblmller G, Wu F, Speck J S 2010 J. Appl. Phys. 107 053517

    [19]

    Wu X M 2014 Ph. D. Dissertation (Nanchang: Nanchang University) (in Chinese) [吴小明 2014 博士学位论文 (南昌: 南昌大学)]

    [20]

    Progl C L, Parish C M, Vitarelli J P, Russell P E 2008 Appl. Phys. Lett. 92 242103

    [21]

    Chen Y, Takeuchi T, Amano H, Akasaki I, Yamada N, Kaneko Y, Wang S Y 1998 Appl. Phys. Lett. 72 710

    [22]

    Chang C Y, Li H, Shih Y T, Lu T C 2015 Appl. Phys. Lett. 106 091104

    [23]

    Won D, Weng X, Redwing J M 2010 J. Appl. Phys. 108 093511

    [24]

    Rhode S, Fu W, Moram M, Massabuau F P, Kappers M, McAleese C, Oehler F, Humphreys C, Dusane R, Sahonta S L 2014 J. Appl. Phys. 116 103513

    [25]

    Cheong M G, Yoon H S, Choi R J, Kim C S, Yu S W, Hong C H, Suh E K, Lee H J 2001 J. Appl. Phys. 90 5642

    [26]

    Florescu D I, Ting S M, Ramer J C, Lee D S, Merai V N, Parkeh A, Lu D, Armour E A 2003 Appl. Phys. Lett. 83 33

    [27]

    Yoshikawa M, Murakami M, Ishida H, Harima H 2009 Appl. Phys. Lett. 94 131908

    [28]

    Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M, Deatcher C J 2002 Appl. Phys. Lett. 80 3913

    [29]

    Shiao W Y, Huang C F, Tang T Y, Huang J J, Lu Y C, Chen C Y, Chen Y S, Yang C C 2007 J. Appl. Phys. 101 113503

  • [1]

    Wierer Jr J J, Koleske D D, Lee S R 2012 Appl. Phys. Lett. 100 111119

    [2]

    Liu L, Wang L, Li D, Liu N Y, Li L, Cao W Y, Yang W, Wan C H, Chen W H, Du W M, Hu X D, Feng Z C 2011 J. Appl. Phys. 109 073106

    [3]

    Kwon S Y, Kim H J, Na H, Kim Y W, Seo H C, Kim H J, Shin Y, Yoon E, Park Y S 2006 J. Appl. Phys. 99 044906

    [4]

    Li T, Wei Q Y, Fischer A M, Huang J Y, Huang Y U, Ponce F A, Liu J P, Lochner Z, Ryou J H, Dupuis R D 2013 Appl. Phys. Lett. 102 041115

    [5]

    Huang C F, Liu T C, Lu Y C, Shiao W Y, Chen Y S, Wang J K, Lu C F, Yang C C 2008 J. Appl. Phys. 104 123106

    [6]

    Xing Y H, Deng J, Han J, Li J J, Shen G C 2009 Acta Phys. Sin. 58 590 (in Chinese) [邢艳辉, 邓军, 韩军, 李建军, 沈光池 2009 58 590]

    [7]

    Tsai C L, Fan G C, Lee Y S 2010 Appl. Phys. A 104 319

    [8]

    Noh Y K, Kim M D, Oh J E 2011 J. Appl. Phys. 110 123108

    [9]

    Cai J X, Sun H Q, Zheng H, Zhang P J, Guo Z Y 2014 Chin. Phys. B 23 058502

    [10]

    Kim K S, Kim J H, Jung S J, Park Y J, Cho S N 2010 Appl. Phys. Lett. 96 091104

    [11]

    Zhuo X J, Zhang J, Li D W, Yi H X, Ren Z W, Tong J H, Wang X F, Chen X, Zhao B J, Wang W L, Li S T 2014 Chin. Phys. B 23 068502

    [12]

    Ryu H Y, Choi W J 2013 J. Appl. Phys. 114 173101

    [13]

    Mao Q H, Jiang F Y, Chen H Y, Zheng C D 2010 Acta Phys. Sin. 59 8078 (in Chinese) [毛清华, 江风益, 陈海英, 郑畅达 2010 59 8078]

    [14]

    Wu X M, Liu J L, Xiong C B, Zhang J L, Quan Z J, Mao Q H, Jiang F Y 2013 J. Appl. Phys. 114 103102

    [15]

    Kozodoy P, Ibbetson J P, Marchand H, Fini P T, Keller S, Speck J S, DenBaars S P, Mishra U K 1998 Appl. Phys. Lett. 73 975

    [16]

    Le L C, Zhao D G, Jiang D S, Li L, Wu L L, Chen P, Liu Z S, Yang J, Li X J, He X G, Zhu J J, Wang H, Zhang S M, Yang H 2013 J. Appl. Phys. 114 143706

    [17]

    Heinke H, Kirchner V, Einfeldt S, Hommel D 2000 Appl. Phys. Lett. 77 2145

    [18]

    Gallinat C S, Koblmller G, Wu F, Speck J S 2010 J. Appl. Phys. 107 053517

    [19]

    Wu X M 2014 Ph. D. Dissertation (Nanchang: Nanchang University) (in Chinese) [吴小明 2014 博士学位论文 (南昌: 南昌大学)]

    [20]

    Progl C L, Parish C M, Vitarelli J P, Russell P E 2008 Appl. Phys. Lett. 92 242103

    [21]

    Chen Y, Takeuchi T, Amano H, Akasaki I, Yamada N, Kaneko Y, Wang S Y 1998 Appl. Phys. Lett. 72 710

    [22]

    Chang C Y, Li H, Shih Y T, Lu T C 2015 Appl. Phys. Lett. 106 091104

    [23]

    Won D, Weng X, Redwing J M 2010 J. Appl. Phys. 108 093511

    [24]

    Rhode S, Fu W, Moram M, Massabuau F P, Kappers M, McAleese C, Oehler F, Humphreys C, Dusane R, Sahonta S L 2014 J. Appl. Phys. 116 103513

    [25]

    Cheong M G, Yoon H S, Choi R J, Kim C S, Yu S W, Hong C H, Suh E K, Lee H J 2001 J. Appl. Phys. 90 5642

    [26]

    Florescu D I, Ting S M, Ramer J C, Lee D S, Merai V N, Parkeh A, Lu D, Armour E A 2003 Appl. Phys. Lett. 83 33

    [27]

    Yoshikawa M, Murakami M, Ishida H, Harima H 2009 Appl. Phys. Lett. 94 131908

    [28]

    Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M, Deatcher C J 2002 Appl. Phys. Lett. 80 3913

    [29]

    Shiao W Y, Huang C F, Tang T Y, Huang J J, Lu Y C, Chen C Y, Chen Y S, Yang C C 2007 J. Appl. Phys. 101 113503

  • [1] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛.  , 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [3] 刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠. 基于V形超表面的透射式太赫兹线偏振转换器.  , 2022, 71(23): 230701. doi: 10.7498/aps.71.20221259
    [4] 段亚娟, 乔吉超. Pd基非晶合金动态弛豫机制和应力松弛行为.  , 2022, 71(8): 086101. doi: 10.7498/aps.71.20212025
    [5] 武鹏, 张涛, 张进成, 郝跃. 低反向漏电自支撑衬底AlGaN/GaN肖特基二极管.  , 2022, 71(15): 158503. doi: 10.7498/aps.71.20220161
    [6] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应.  , 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [7] 梁宇宏, 李红娟, 尹辑文. 晶格弛豫方法研究PbSe量子点的带内弛豫过程.  , 2019, 68(12): 127301. doi: 10.7498/aps.68.20190187
    [8] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响.  , 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [9] 张爽, 赵德刚, 刘宗顺, 朱建军, 张书明, 王玉田, 段俐宏, 刘文宝, 江德生, 杨辉. 穿透型V形坑对GaN基p-i-n结构紫外探测器反向漏电的影响.  , 2009, 58(11): 7952-7957. doi: 10.7498/aps.58.7952
    [10] 范 隆, 郝 跃. 辐射感生应力弛豫对AlmGa1-mN/GaN HEMT电学特性的影响.  , 2007, 56(6): 3393-3399. doi: 10.7498/aps.56.3393
    [11] 刘红侠, 郝跃. 应力导致的薄栅氧化层漏电流瞬态特性研究.  , 2001, 50(9): 1769-1773. doi: 10.7498/aps.50.1769
    [12] 于志刚, 黄青锋, 孙鑫. 高分子光激发的超快过程与弛豫.  , 1993, 42(11): 1822-1829. doi: 10.7498/aps.42.1822
    [13] 李建华, 麦振洪, 崔树范. 应变弛豫InGaAs/GaAs超晶格的X射线双晶衍射及形貌研究.  , 1993, 42(9): 1485-1490. doi: 10.7498/aps.42.1485
    [14] 费浩生, 陈肖慧, 韩力, 赵家龙. 用激光频域技术研究CS2分子的超快速弛豫过程.  , 1991, 40(9): 1456-1459. doi: 10.7498/aps.40.1456
    [15] 熊诗杰. 具有调制分布复合中心的非晶半导体超晶格中载流子的弛豫过程.  , 1986, 35(12): 1624-1633. doi: 10.7498/aps.35.1624
    [16] 李景德. 热电弛豫效应.  , 1984, 33(11): 1563-1568. doi: 10.7498/aps.33.1563
    [17] 汤昌国, 董太乾, 郑乐民. Rb87原子基态超精细0—0跃迁的章动和弛豫现象.  , 1983, 32(7): 829-837. doi: 10.7498/aps.32.829
    [18] 郑伟谋, 王昌衡. 弛豫表面的晶格振动不稳定性.  , 1981, 30(9): 1242-1248. doi: 10.7498/aps.30.1242
    [19] 黄武汉, 林福成, 楼祺洪. 红宝石中自旋—晶格弛豫直接过程的计算.  , 1965, 21(8): 1500-1510. doi: 10.7498/aps.21.1500
    [20] 马本堃. 自旋-晶格弛豫.  , 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
计量
  • 文章访问数:  5948
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-30
  • 修回日期:  2016-01-12
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map