搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计入固液界面作用的润滑热力学模型与分析

经昊达 张向军 田煜 孟永钢

引用本文:
Citation:

计入固液界面作用的润滑热力学模型与分析

经昊达, 张向军, 田煜, 孟永钢

Thermodynamic analysis of lubrication considering solid-liquid interface interaction

Jing Hao-Da, Zhang Xiang-Jun, Tian Yu, Meng Yong-Gang
PDF
导出引用
  • 摩擦与润滑过程是典型的能量耗散过程, 在机理上与非平衡热力学中的熵增、耗散结构等理论颇有相似之处. 通过热力学分析可以对一些典型的摩擦磨损过程做出合理的机理揭示与推测. 本文利用热力学理论对典型的润滑过程进行了建模分析. 采用分离压模型表征和计入了微尺度下的固液界面作用, 揭示分析了润滑热力学模型与润滑状态Stribeck曲线的联系. 从分析计算结果来看, 润滑Stribeck曲线的摩擦系数最低点与系统热力学上的熵增率最低点具有相当好的对应关系, 而润滑状态从弹流润滑向薄膜润滑的转变过程, 可以用耗散结构理论加以机理解释. 文中的热力学模型和方法能够有效地体现出润滑过程中多物理要素跨尺度非线性耦合的作用, 对实际工程与实验有着重要的指导作用.
    Friction or lubrication process is a typical process of the energy dissipation. It can be reasonably described and speculated by using the entropy increase and dissipative structure theory of the non-equilibrium thermodynamics. In this paper, we model and analyze the typical thin-film lubrication mechanism based on the theory of thermodynamics, by using the interfacial disjoining pressure to characterize the dominant role of the solid-lubricant interaction on a microscale and establishing the lubrication Stribeck curve based on thermodynamic concepts. The concept of entropy production is adopted to describe the lubrication system, which is defined as the sum of multiplications of the thermodynamic forces and flows. Then the variations and the competing relations between the pairs of thermodynamic forces and flows could be used to reveal the different factors dominated in the lubrication system, such as the solid-liquid interaction, the sliding velocity, and the normal load. In this paper, we assume that all the dissipated energy caused by the viscous resistance of lubricant is converted into heat, then the total entropy increase per surface area at the frictional interface is considered, affected by interfacial disjoining pressure and the one-dimensional heat flow. With the entropy increasing analysis of lubrication process, we find that when the entropy production in the steady state becomes minimum, the total energy dissipation due to friction also becomes minimum, which directly indicates the lowest friction coefficient point at the lubrication Stribeck curve. Moreover, when a lubrication system loses its stability slightly from the equilibrium state, self-organization may occur at the solid-lubricant interface, thus resulting in partially ordering interfacial structures, which may indicate the interfacial structures when tribosystem turns from hydrodynamic lubrication phase into thin-film lubrication phase. In the experimental aspect, the location of the lowest friction coefficient point at the Stribeck curve has a very good correspondence to the minimum entropy point predicted by our thermodynamic model, and the lubrication transition process from hydrodynamic phase to thin-film phase can be explained quite well by the theory of dissipative structures when the system loses its stability. Furthermore, a calculation model of the friction coefficient for thin-film lubrication is obtained when considering the dominant contribution of the solid-lubricant interfacial interaction through an equivalent force method. The calculation data correspond well to the experimental results. In summary, thermodynamic model could effectively characterize the lubrication process in mechanism by revealing the involved multi-scale effect, multi-physical effect and nonlinear coupling effect.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB934101)和国家自然科学基金(批准号: 51175282, 51375254)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China(Grant No. 2012CB934101) and the National Natural Science Foundation of China (Grant Nos. 51175282, 51375254).
    [1]

    Amiri M, Khonsari M M 2010 Entropy 12 1021

    [2]

    Fox-Rabinovich G S, Gershman I S, Yamamoto K, Biksa A, Veldhuis S C, Beake B D, Kovalev A I 2010 Entropy 12 275

    [3]

    Nosonovsky M 2010 Entropy 12 1345

    [4]

    Klamecki B E 1980 Wear 58 325

    [5]

    Klamecki B E 1980 Wear 63 113

    [6]

    Klamecki B E 1982 Wear 77 115

    [7]

    Klamecki B E 1984 Wear 96 319

    [8]

    Zmitrowicz A 1987 Wear 114 135

    [9]

    Zmitrowicz A 1987 Wear 114 169

    [10]

    Zmitrowicz A 1987 Wear 114 199

    [11]

    Doelling K L, Ling F F, Bryant M D, Heilman B P 2000 J. Appl. Phys. 88 2999

    [12]

    Dai Z D, Yang S R, Wang M, Xue Q J 2000 J. Nanjing Univ. Aeronaut. Astronaut. 32 125 (in Chinese) [戴振东, 杨生荣, 王珉, 薛群基 2000 南京航空航天大学学报 32 125]

    [13]

    Bryant M D, Khonsari M M, Ling F F 2008 Proc. Roy. Soc. A 464 2001

    [14]

    Bryant M D 2009 FME Trans. 37 55

    [15]

    Nosonovsky M, Bhushan B 2009 Phil. Trans. R. Soc. A 367 1607

    [16]

    Zypman F R, Ferrante J, Jansen M, Scanlon K, Abel P 2003 J. Phys. Condens. Mat. 15 191

    [17]

    Adler M, Ferrante J, Schilowitz A, Yablon D, Zypman F 2004 Mater. Res. Soc. 782 111

    [18]

    Zhang X J, Huang Y, Guo Y B, Tian Y, Meng Y G 2013 Chin. Phys. B 22 16202

    [19]

    Nicolis G, Prigogine I 1977 Self-organization in Nonequilibrium Systems (New York: Wiley) pp32-62

    [20]

    Glansdorff P, Prigogine I, Hill R N 1973 Am. J. Phys. 41 147

    [21]

    Prigogine I, Nicolis G, Misguich J 1965 J. Chem. Phys. 43 4516

    [22]

    Amiri M, Khonsari M M 2010 Entropy 12 1021

    [23]

    Mate C M 1992 J. Appl. Phys. 72 3084

    [24]

    Israelachvili J N 2011 Intermolecular and Surface Forces 3 (San Diego: Academic press) pp261-270

    [25]

    Mitlin V S 1995 J. Colloid Interf. Sci. 170 65

    [26]

    Salamon P, Nitzan A, Andresen B, Berry R S 1980 Phys. Rev. A 21 2115

    [27]

    Hanumanthu R, Stebe K J 2011 Colloids Surf. A 391 51

    [28]

    Mellema M, Benjamins J 2004 Colloids Surf. A 237 113

    [29]

    Bongaerts J H H, Fourtouni K, Stokes J R 2007 Tribol. Int. 40 1531

    [30]

    Hamrock B J, Dowson D 1977 J. Tribol-T. ASME 99 264

    [31]

    Zhang X J, Liu X X, Zhang X H, Tian Y, Meng Y G 2012 Liq. Cryst. 39 1305

    [32]

    Bocquet L, Charlaix E 2010 Chem. Soc. Rev. 39 1073

  • [1]

    Amiri M, Khonsari M M 2010 Entropy 12 1021

    [2]

    Fox-Rabinovich G S, Gershman I S, Yamamoto K, Biksa A, Veldhuis S C, Beake B D, Kovalev A I 2010 Entropy 12 275

    [3]

    Nosonovsky M 2010 Entropy 12 1345

    [4]

    Klamecki B E 1980 Wear 58 325

    [5]

    Klamecki B E 1980 Wear 63 113

    [6]

    Klamecki B E 1982 Wear 77 115

    [7]

    Klamecki B E 1984 Wear 96 319

    [8]

    Zmitrowicz A 1987 Wear 114 135

    [9]

    Zmitrowicz A 1987 Wear 114 169

    [10]

    Zmitrowicz A 1987 Wear 114 199

    [11]

    Doelling K L, Ling F F, Bryant M D, Heilman B P 2000 J. Appl. Phys. 88 2999

    [12]

    Dai Z D, Yang S R, Wang M, Xue Q J 2000 J. Nanjing Univ. Aeronaut. Astronaut. 32 125 (in Chinese) [戴振东, 杨生荣, 王珉, 薛群基 2000 南京航空航天大学学报 32 125]

    [13]

    Bryant M D, Khonsari M M, Ling F F 2008 Proc. Roy. Soc. A 464 2001

    [14]

    Bryant M D 2009 FME Trans. 37 55

    [15]

    Nosonovsky M, Bhushan B 2009 Phil. Trans. R. Soc. A 367 1607

    [16]

    Zypman F R, Ferrante J, Jansen M, Scanlon K, Abel P 2003 J. Phys. Condens. Mat. 15 191

    [17]

    Adler M, Ferrante J, Schilowitz A, Yablon D, Zypman F 2004 Mater. Res. Soc. 782 111

    [18]

    Zhang X J, Huang Y, Guo Y B, Tian Y, Meng Y G 2013 Chin. Phys. B 22 16202

    [19]

    Nicolis G, Prigogine I 1977 Self-organization in Nonequilibrium Systems (New York: Wiley) pp32-62

    [20]

    Glansdorff P, Prigogine I, Hill R N 1973 Am. J. Phys. 41 147

    [21]

    Prigogine I, Nicolis G, Misguich J 1965 J. Chem. Phys. 43 4516

    [22]

    Amiri M, Khonsari M M 2010 Entropy 12 1021

    [23]

    Mate C M 1992 J. Appl. Phys. 72 3084

    [24]

    Israelachvili J N 2011 Intermolecular and Surface Forces 3 (San Diego: Academic press) pp261-270

    [25]

    Mitlin V S 1995 J. Colloid Interf. Sci. 170 65

    [26]

    Salamon P, Nitzan A, Andresen B, Berry R S 1980 Phys. Rev. A 21 2115

    [27]

    Hanumanthu R, Stebe K J 2011 Colloids Surf. A 391 51

    [28]

    Mellema M, Benjamins J 2004 Colloids Surf. A 237 113

    [29]

    Bongaerts J H H, Fourtouni K, Stokes J R 2007 Tribol. Int. 40 1531

    [30]

    Hamrock B J, Dowson D 1977 J. Tribol-T. ASME 99 264

    [31]

    Zhang X J, Liu X X, Zhang X H, Tian Y, Meng Y G 2012 Liq. Cryst. 39 1305

    [32]

    Bocquet L, Charlaix E 2010 Chem. Soc. Rev. 39 1073

  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真.  , 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] 吴晓娲, 秦四清, 薛雷, 杨百存, 张珂. 孕震断层锁固段累积损伤导致失稳的自组织-临界行为特征.  , 2018, 67(20): 206401. doi: 10.7498/aps.67.20180614
    [3] 孙保安, 王利峰, 邵建华. 非晶力学流变的自组织临界行为.  , 2017, 66(17): 178103. doi: 10.7498/aps.66.178103
    [4] 余旭涛, 徐进, 张在琛. 基于量子远程传态的无线自组织量子通信网络路由协议.  , 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [5] 黄丽清, 潘华强, 王 军, 童慧敏, 朱 可, 任冠旭, 王永昌. 多孔氧化铝膜上自组织生长Sn纳米点阵列的研究.  , 2007, 56(11): 6712-6716. doi: 10.7498/aps.56.6712
    [6] 张 林, 孔红艳, 杨国健. 约束阱中受激发原子的集体反弹效应所导致的自组织行为.  , 2006, 55(10): 5122-5128. doi: 10.7498/aps.55.5122
    [7] 周海平, 蔡绍洪, 王春香. 含崩塌概率的一维沙堆模型的自组织临界性.  , 2006, 55(7): 3355-3359. doi: 10.7498/aps.55.3355
    [8] 董庆瑞, 牛智川. 垂直耦合自组织InAs双量子点中激子能的计算.  , 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [9] 张永炬, 余森江. 准自由支撑铝薄膜中有序表面结构的自组织生长.  , 2005, 54(10): 4867-4873. doi: 10.7498/aps.54.4867
    [10] 李 欣, 胡元中, 王 慧. 磁盘润滑膜全氟聚醚的分子动力学模拟研究.  , 2005, 54(8): 3787-3792. doi: 10.7498/aps.54.3787
    [11] 吴青松, 赵 岩, 张彩碚, 李 峰. 片状三角形银纳米颗粒的自组织行为与光学特性.  , 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
    [12] 巩龙, 童培庆. 二维格气模型中动力学相变与自组织临界现象.  , 2003, 52(11): 2757-2761. doi: 10.7498/aps.52.2757
    [13] 卢励吾, 王占国, C.L.Yang, J.Wang, Z.H.Ma, I.K.Sou, WeikunGe. 分子束外延生长ZnSe自组织量子点光、电行为研究.  , 2002, 51(2): 310-314. doi: 10.7498/aps.51.310
    [14] 全宏俊, 汪秉宏, 杨伟松, 王卫宁, 罗晓曙. 经纪人模仿在演化少数者博弈模型中引入的自组织分离效应.  , 2002, 51(12): 2667-2670. doi: 10.7498/aps.51.2667
    [15] 秦伟平, 秦冠仕, 张继森, 吴长锋, 王继伟, 杜国同. 单分子-光子制冷泵的热力学行为.  , 2001, 50(8): 1467-1474. doi: 10.7498/aps.50.1467
    [16] 司俊杰, 杨沁清, 滕 达, 王红杰, 余金中, 王启明, 郭丽伟, 周均铭. (113)面硅衬底上自组织生长的GeSi量子点及其光荧光.  , 1999, 48(9): 1745-1750. doi: 10.7498/aps.48.1745
    [17] 吕振东, 李 晴, 许继宗, 郑宝真, 徐仲英, 葛惟锟. 自组织生长InAs/GaAs量子点发光动力学研究.  , 1999, 48(4): 744-750. doi: 10.7498/aps.48.744
    [18] 王志明, 封松林, 吕振东, 杨小平, 陈宗圭, 宋春英, 徐仲英, 郑厚植, 王凤莲, 韩培德, 段晓峰. 自组织InAs/GaAs量子点垂直排列生长研究.  , 1998, 47(1): 89-93. doi: 10.7498/aps.47.89
    [19] 欧发. 耗散系统的准热力学模型.  , 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [20] 卢柯. 金属纳米晶体的界面热力学特性.  , 1995, 44(9): 1454-1460. doi: 10.7498/aps.44.1454
计量
  • 文章访问数:  6600
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-29
  • 修回日期:  2015-04-06
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map