-
基于电子束区域熔炼中熔区上力的平衡关系式, 计算获得了基座法、等径区熔法两种工艺下稳定成形熔区高度的表达式, 探讨了试样尺寸、晶体生长角和凝固速率等参数对六种贵金属稳定成形熔区高度的影响. 结果发现, 区熔相同尺寸试样时, 六种贵金属能够稳定成形熔区高度大小依次排序为 Ru> Pd> Ir> Pt> Ag> Au. 同时获得了这六种贵金属的晶体生长角在8.4°-10.7°之间, 而实际的晶体生长角与界面生长机制有关. 在基座法中, 连续生长机制所能支撑的熔区高度最小, 而等径区熔法中连续生长机制支撑的熔区高度大于位错生长机制和小面生长机制. 这三种晶体界面生长机制中连续生长方式对晶体生长角和区熔熔区高度影响较小, 有利于贵金属区熔单晶制备. 另外当凝固速率达到2.4 mm·min-1, 位错和小面生长机制对区熔熔区高度的影响也变得很小, 预测的工艺参数与Ir和Ru单晶区熔实验报道结果基本符合.Precious metals exhibit fascinating properties and extensive applications in chemical engineering, high-temperature measurement, and electronic industry. The microstructures of these metals are generally polycrystalline and the precious metals like Ir and Ru with polycrystalline microstructures are difficult to deform at room temperature. However, the single crystal of precious metal can be well deformed to the final product, and it can be effectively used as a material. In this paper, electron beam floating zone method (EBFZM) is employed to prepare single crystals of precious metals, due to the fact that precious metals, e. g. Ir and Ru have high melting points of 2443 ℃ and 2310 ℃ respectively, and no crucible can be used for this processing. Considering the fact that the height of floating zone plays a key role in EBFZM, we deduce the expression for height of floating zone in EBFZM based on pedestal growth and zone melting techniques. The effects of crystal growth angle, interface growth mechanism, and solidification rate on the height of floating zone are discussed. The results show that the heights of floating zone for six precious metals are in a sequence order of Ru >Pd >Ir >Pt >Ag >Au. The crystal growth angles of these metals are calculated in a range of 8.4°-10.7°. For the same growth angle, the heights of floating zone, calculated by the Pedestal growth, zone melting and Czochralski-like growth techniques, are close to each other. But for different growth angles, the height of floating zone increases with increasing the growth angle for pedestal growth and Czochralski-like growth techniques, different from zone melting technique. Meanwhile, the height of floating zone changes with interface growth mechanism and solidification rate. For the pedestal growth technique, the height of floating zone is low for continuous growth mechanism, and for zone melting technique, its height of floating zone, calculated from continuous growth mechanism, is larger than those from the dislocation and faceting growth mechanisms. Furthermore, it reveals that the growth angle and height of floating zone vary slightly with continuous growth mechanism. In addition, a predicted solidification rate of 2.4 mm/min, available for single-crystal growth of precious metals, is in agreement with the previous experimental results of single crystals Ir and Ru prepared by EBFZM.
-
Keywords:
- precious metal /
- electron beam floating zone method /
- growth angle /
- interface growth mechanism
[1] Matucha K H (translated by Ding D Y) 1999 Structure and Properties of Nonferrous Alloys (Beijing: Science Press) pp413-450 (in Chinese) [马图哈 K H 主编 (丁道云等 译) 1999 非铁合金的结构与性能(北京: 科学出版社)第413-450页]
[2] Li D X, Zhang Y L, Yuan H M 1991 Precious Metal Materials (Changshan: Central South University Press) pp1-57 (in Chinese) [黎鼎鑫, 张永俐, 袁弘鸣 1991 贵金属材料学 (湖南长沙: 中南工业大学出版社) 第1-57页]
[3] Ohriner E K 2008 Plat. Met. Rev. 52 186
[4] Zhang C, Tang X, Wang Y L, Zhang Q Y 2005 Acta Phys. Sin. 54 5791 (in Chinese) [张超, 唐鑫, 王永良, 张庆瑜 2005 54 5791]
[5] Chen J Y, Lim B, Lee E P, Xia Y N 2009 Nano Today 4 81
[6] Sun J, He L B, Lo, Y C, Xu, T, Bi H C, Sun L T, Zhang Z, Mao S X, Li J 2014 Nat. Mater. 13 1007
[7] Savitskii E M, Prince A 1989 Handbook of Precious Metals (New York: Hemisphere Press) p25
[8] Fu H Z, Guo J J, Liu L, Li J S 2008 Directional Solidification of Advanced Materials (Beijing: Science Press) p705 (in Chinese) [傅恒志, 郭景杰, 刘林, 李金山 2008 先进材料定向凝固(北京: 科学技术出版社) 第705页]
[9] Cawkwell M J, Nguyen-Manh D, Woodward C, Pettifor D G, Vitek V 2005 Science 309 1059
[10] Verstraete M J, Christpehe C J 2005 Appl. Phys. Lett. 86 191917
[11] Otani S, Tanaka T, Ishizawa Y 1990 J. Cryst. Growth 106 498
[12] Otani S, Ohsawa T 1999 J. Cryst. Growth 200 472
[13] Behr G, Loser W, Apostu M O, Gruner W, Hucker M, Schramm L, Souptel D, Teresiak A, Werner J 2005 J. Cryst. Res. Technol. 40 21
[14] Virozub A, Rasin I G, Brandon S 2008 J. Cryst. Growth 310 5416
[15] Satunkin G A 2003 J. Cryst. Growth 255 170
[16] Hurle D T J 1983 J. Cryst. Growth 63 13
[17] Johansen T H 1992 J Cryst. Growth 118 353
[18] Weinstein O, Brandon S 2004 J. Cryst. Growth 268 299
[19] Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p211
[20] Min N B 1982 Physical Fundamentals of Crystal Growth (Shanghai: Shanghai Science & Technology Press) p398 (in Chinese) [闵乃本 1982 晶体生长的物理基础(上海: 上海科学技术出版社) 第398页]
[21] Hu Z W, Li Z K, Zhang Q, Zhang T J, Zhang J L, Yin T 2007 Rare Met. Mater. Eng. 36 367 (in Chinese) [胡忠武, 李中奎, 张清, 张廷杰, 张军良, 殷涛 2007 稀有金属材料与工程 36 367]
[22] Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p204
[23] Wang X B, Lin X, Wang L L, Bai B B, Huang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 62 108103]
[24] Keene B J 1993 Inter. Mater. Rev. 38 157
[25] Jiang Q, Lu H M 2008 Surf. Sci. Rep. 63 427
[26] Zhang J, Lou L H 2007 J. Mater. Sci. Tech. 23 289
[27] Li T 1998 Precious Met. 19 58 (in Chinese) [李廷 1998 贵金属 19 58]
-
[1] Matucha K H (translated by Ding D Y) 1999 Structure and Properties of Nonferrous Alloys (Beijing: Science Press) pp413-450 (in Chinese) [马图哈 K H 主编 (丁道云等 译) 1999 非铁合金的结构与性能(北京: 科学出版社)第413-450页]
[2] Li D X, Zhang Y L, Yuan H M 1991 Precious Metal Materials (Changshan: Central South University Press) pp1-57 (in Chinese) [黎鼎鑫, 张永俐, 袁弘鸣 1991 贵金属材料学 (湖南长沙: 中南工业大学出版社) 第1-57页]
[3] Ohriner E K 2008 Plat. Met. Rev. 52 186
[4] Zhang C, Tang X, Wang Y L, Zhang Q Y 2005 Acta Phys. Sin. 54 5791 (in Chinese) [张超, 唐鑫, 王永良, 张庆瑜 2005 54 5791]
[5] Chen J Y, Lim B, Lee E P, Xia Y N 2009 Nano Today 4 81
[6] Sun J, He L B, Lo, Y C, Xu, T, Bi H C, Sun L T, Zhang Z, Mao S X, Li J 2014 Nat. Mater. 13 1007
[7] Savitskii E M, Prince A 1989 Handbook of Precious Metals (New York: Hemisphere Press) p25
[8] Fu H Z, Guo J J, Liu L, Li J S 2008 Directional Solidification of Advanced Materials (Beijing: Science Press) p705 (in Chinese) [傅恒志, 郭景杰, 刘林, 李金山 2008 先进材料定向凝固(北京: 科学技术出版社) 第705页]
[9] Cawkwell M J, Nguyen-Manh D, Woodward C, Pettifor D G, Vitek V 2005 Science 309 1059
[10] Verstraete M J, Christpehe C J 2005 Appl. Phys. Lett. 86 191917
[11] Otani S, Tanaka T, Ishizawa Y 1990 J. Cryst. Growth 106 498
[12] Otani S, Ohsawa T 1999 J. Cryst. Growth 200 472
[13] Behr G, Loser W, Apostu M O, Gruner W, Hucker M, Schramm L, Souptel D, Teresiak A, Werner J 2005 J. Cryst. Res. Technol. 40 21
[14] Virozub A, Rasin I G, Brandon S 2008 J. Cryst. Growth 310 5416
[15] Satunkin G A 2003 J. Cryst. Growth 255 170
[16] Hurle D T J 1983 J. Cryst. Growth 63 13
[17] Johansen T H 1992 J Cryst. Growth 118 353
[18] Weinstein O, Brandon S 2004 J. Cryst. Growth 268 299
[19] Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p211
[20] Min N B 1982 Physical Fundamentals of Crystal Growth (Shanghai: Shanghai Science & Technology Press) p398 (in Chinese) [闵乃本 1982 晶体生长的物理基础(上海: 上海科学技术出版社) 第398页]
[21] Hu Z W, Li Z K, Zhang Q, Zhang T J, Zhang J L, Yin T 2007 Rare Met. Mater. Eng. 36 367 (in Chinese) [胡忠武, 李中奎, 张清, 张廷杰, 张军良, 殷涛 2007 稀有金属材料与工程 36 367]
[22] Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p204
[23] Wang X B, Lin X, Wang L L, Bai B B, Huang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 62 108103]
[24] Keene B J 1993 Inter. Mater. Rev. 38 157
[25] Jiang Q, Lu H M 2008 Surf. Sci. Rep. 63 427
[26] Zhang J, Lou L H 2007 J. Mater. Sci. Tech. 23 289
[27] Li T 1998 Precious Met. 19 58 (in Chinese) [李廷 1998 贵金属 19 58]
计量
- 文章访问数: 6337
- PDF下载量: 629
- 被引次数: 0