搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶体生长角和凝固速率对贵金属电子束区域熔炼晶体生长的作用

李双明 耿振博 胡锐 刘毅 罗锡明

引用本文:
Citation:

晶体生长角和凝固速率对贵金属电子束区域熔炼晶体生长的作用

李双明, 耿振博, 胡锐, 刘毅, 罗锡明

Effects of growth angle and solidification rate on crystal growth of precious metal prepared by electron beam floating zone method

Li Shuang-Ming, Geng Zhen-Bo, Hu Rui, Liu Yi, Luo Xi-Ming
PDF
导出引用
  • 基于电子束区域熔炼中熔区上力的平衡关系式, 计算获得了基座法、等径区熔法两种工艺下稳定成形熔区高度的表达式, 探讨了试样尺寸、晶体生长角和凝固速率等参数对六种贵金属稳定成形熔区高度的影响. 结果发现, 区熔相同尺寸试样时, 六种贵金属能够稳定成形熔区高度大小依次排序为 Ru> Pd> Ir> Pt> Ag> Au. 同时获得了这六种贵金属的晶体生长角在8.4°-10.7°之间, 而实际的晶体生长角与界面生长机制有关. 在基座法中, 连续生长机制所能支撑的熔区高度最小, 而等径区熔法中连续生长机制支撑的熔区高度大于位错生长机制和小面生长机制. 这三种晶体界面生长机制中连续生长方式对晶体生长角和区熔熔区高度影响较小, 有利于贵金属区熔单晶制备. 另外当凝固速率达到2.4 mm·min-1, 位错和小面生长机制对区熔熔区高度的影响也变得很小, 预测的工艺参数与Ir和Ru单晶区熔实验报道结果基本符合.
    Precious metals exhibit fascinating properties and extensive applications in chemical engineering, high-temperature measurement, and electronic industry. The microstructures of these metals are generally polycrystalline and the precious metals like Ir and Ru with polycrystalline microstructures are difficult to deform at room temperature. However, the single crystal of precious metal can be well deformed to the final product, and it can be effectively used as a material. In this paper, electron beam floating zone method (EBFZM) is employed to prepare single crystals of precious metals, due to the fact that precious metals, e. g. Ir and Ru have high melting points of 2443 ℃ and 2310 ℃ respectively, and no crucible can be used for this processing. Considering the fact that the height of floating zone plays a key role in EBFZM, we deduce the expression for height of floating zone in EBFZM based on pedestal growth and zone melting techniques. The effects of crystal growth angle, interface growth mechanism, and solidification rate on the height of floating zone are discussed. The results show that the heights of floating zone for six precious metals are in a sequence order of Ru >Pd >Ir >Pt >Ag >Au. The crystal growth angles of these metals are calculated in a range of 8.4°-10.7°. For the same growth angle, the heights of floating zone, calculated by the Pedestal growth, zone melting and Czochralski-like growth techniques, are close to each other. But for different growth angles, the height of floating zone increases with increasing the growth angle for pedestal growth and Czochralski-like growth techniques, different from zone melting technique. Meanwhile, the height of floating zone changes with interface growth mechanism and solidification rate. For the pedestal growth technique, the height of floating zone is low for continuous growth mechanism, and for zone melting technique, its height of floating zone, calculated from continuous growth mechanism, is larger than those from the dislocation and faceting growth mechanisms. Furthermore, it reveals that the growth angle and height of floating zone vary slightly with continuous growth mechanism. In addition, a predicted solidification rate of 2.4 mm/min, available for single-crystal growth of precious metals, is in agreement with the previous experimental results of single crystals Ir and Ru prepared by EBFZM.
    • 基金项目: 国家自然科学基金-云南省联合基金项目(批准号: U1202273)资助的课题.
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China-Yunnan Province (Grant No. U1202273).
    [1]

    Matucha K H (translated by Ding D Y) 1999 Structure and Properties of Nonferrous Alloys (Beijing: Science Press) pp413-450 (in Chinese) [马图哈 K H 主编 (丁道云等 译) 1999 非铁合金的结构与性能(北京: 科学出版社)第413-450页]

    [2]

    Li D X, Zhang Y L, Yuan H M 1991 Precious Metal Materials (Changshan: Central South University Press) pp1-57 (in Chinese) [黎鼎鑫, 张永俐, 袁弘鸣 1991 贵金属材料学 (湖南长沙: 中南工业大学出版社) 第1-57页]

    [3]

    Ohriner E K 2008 Plat. Met. Rev. 52 186

    [4]

    Zhang C, Tang X, Wang Y L, Zhang Q Y 2005 Acta Phys. Sin. 54 5791 (in Chinese) [张超, 唐鑫, 王永良, 张庆瑜 2005 54 5791]

    [5]

    Chen J Y, Lim B, Lee E P, Xia Y N 2009 Nano Today 4 81

    [6]

    Sun J, He L B, Lo, Y C, Xu, T, Bi H C, Sun L T, Zhang Z, Mao S X, Li J 2014 Nat. Mater. 13 1007

    [7]

    Savitskii E M, Prince A 1989 Handbook of Precious Metals (New York: Hemisphere Press) p25

    [8]

    Fu H Z, Guo J J, Liu L, Li J S 2008 Directional Solidification of Advanced Materials (Beijing: Science Press) p705 (in Chinese) [傅恒志, 郭景杰, 刘林, 李金山 2008 先进材料定向凝固(北京: 科学技术出版社) 第705页]

    [9]

    Cawkwell M J, Nguyen-Manh D, Woodward C, Pettifor D G, Vitek V 2005 Science 309 1059

    [10]

    Verstraete M J, Christpehe C J 2005 Appl. Phys. Lett. 86 191917

    [11]

    Otani S, Tanaka T, Ishizawa Y 1990 J. Cryst. Growth 106 498

    [12]

    Otani S, Ohsawa T 1999 J. Cryst. Growth 200 472

    [13]

    Behr G, Loser W, Apostu M O, Gruner W, Hucker M, Schramm L, Souptel D, Teresiak A, Werner J 2005 J. Cryst. Res. Technol. 40 21

    [14]

    Virozub A, Rasin I G, Brandon S 2008 J. Cryst. Growth 310 5416

    [15]

    Satunkin G A 2003 J. Cryst. Growth 255 170

    [16]

    Hurle D T J 1983 J. Cryst. Growth 63 13

    [17]

    Johansen T H 1992 J Cryst. Growth 118 353

    [18]

    Weinstein O, Brandon S 2004 J. Cryst. Growth 268 299

    [19]

    Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p211

    [20]

    Min N B 1982 Physical Fundamentals of Crystal Growth (Shanghai: Shanghai Science & Technology Press) p398 (in Chinese) [闵乃本 1982 晶体生长的物理基础(上海: 上海科学技术出版社) 第398页]

    [21]

    Hu Z W, Li Z K, Zhang Q, Zhang T J, Zhang J L, Yin T 2007 Rare Met. Mater. Eng. 36 367 (in Chinese) [胡忠武, 李中奎, 张清, 张廷杰, 张军良, 殷涛 2007 稀有金属材料与工程 36 367]

    [22]

    Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p204

    [23]

    Wang X B, Lin X, Wang L L, Bai B B, Huang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 62 108103]

    [24]

    Keene B J 1993 Inter. Mater. Rev. 38 157

    [25]

    Jiang Q, Lu H M 2008 Surf. Sci. Rep. 63 427

    [26]

    Zhang J, Lou L H 2007 J. Mater. Sci. Tech. 23 289

    [27]

    Li T 1998 Precious Met. 19 58 (in Chinese) [李廷 1998 贵金属 19 58]

  • [1]

    Matucha K H (translated by Ding D Y) 1999 Structure and Properties of Nonferrous Alloys (Beijing: Science Press) pp413-450 (in Chinese) [马图哈 K H 主编 (丁道云等 译) 1999 非铁合金的结构与性能(北京: 科学出版社)第413-450页]

    [2]

    Li D X, Zhang Y L, Yuan H M 1991 Precious Metal Materials (Changshan: Central South University Press) pp1-57 (in Chinese) [黎鼎鑫, 张永俐, 袁弘鸣 1991 贵金属材料学 (湖南长沙: 中南工业大学出版社) 第1-57页]

    [3]

    Ohriner E K 2008 Plat. Met. Rev. 52 186

    [4]

    Zhang C, Tang X, Wang Y L, Zhang Q Y 2005 Acta Phys. Sin. 54 5791 (in Chinese) [张超, 唐鑫, 王永良, 张庆瑜 2005 54 5791]

    [5]

    Chen J Y, Lim B, Lee E P, Xia Y N 2009 Nano Today 4 81

    [6]

    Sun J, He L B, Lo, Y C, Xu, T, Bi H C, Sun L T, Zhang Z, Mao S X, Li J 2014 Nat. Mater. 13 1007

    [7]

    Savitskii E M, Prince A 1989 Handbook of Precious Metals (New York: Hemisphere Press) p25

    [8]

    Fu H Z, Guo J J, Liu L, Li J S 2008 Directional Solidification of Advanced Materials (Beijing: Science Press) p705 (in Chinese) [傅恒志, 郭景杰, 刘林, 李金山 2008 先进材料定向凝固(北京: 科学技术出版社) 第705页]

    [9]

    Cawkwell M J, Nguyen-Manh D, Woodward C, Pettifor D G, Vitek V 2005 Science 309 1059

    [10]

    Verstraete M J, Christpehe C J 2005 Appl. Phys. Lett. 86 191917

    [11]

    Otani S, Tanaka T, Ishizawa Y 1990 J. Cryst. Growth 106 498

    [12]

    Otani S, Ohsawa T 1999 J. Cryst. Growth 200 472

    [13]

    Behr G, Loser W, Apostu M O, Gruner W, Hucker M, Schramm L, Souptel D, Teresiak A, Werner J 2005 J. Cryst. Res. Technol. 40 21

    [14]

    Virozub A, Rasin I G, Brandon S 2008 J. Cryst. Growth 310 5416

    [15]

    Satunkin G A 2003 J. Cryst. Growth 255 170

    [16]

    Hurle D T J 1983 J. Cryst. Growth 63 13

    [17]

    Johansen T H 1992 J Cryst. Growth 118 353

    [18]

    Weinstein O, Brandon S 2004 J. Cryst. Growth 268 299

    [19]

    Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p211

    [20]

    Min N B 1982 Physical Fundamentals of Crystal Growth (Shanghai: Shanghai Science & Technology Press) p398 (in Chinese) [闵乃本 1982 晶体生长的物理基础(上海: 上海科学技术出版社) 第398页]

    [21]

    Hu Z W, Li Z K, Zhang Q, Zhang T J, Zhang J L, Yin T 2007 Rare Met. Mater. Eng. 36 367 (in Chinese) [胡忠武, 李中奎, 张清, 张廷杰, 张军良, 殷涛 2007 稀有金属材料与工程 36 367]

    [22]

    Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p204

    [23]

    Wang X B, Lin X, Wang L L, Bai B B, Huang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 62 108103]

    [24]

    Keene B J 1993 Inter. Mater. Rev. 38 157

    [25]

    Jiang Q, Lu H M 2008 Surf. Sci. Rep. 63 427

    [26]

    Zhang J, Lou L H 2007 J. Mater. Sci. Tech. 23 289

    [27]

    Li T 1998 Precious Met. 19 58 (in Chinese) [李廷 1998 贵金属 19 58]

  • [1] 李峰, 肖传云, 阚二军, 陆瑞锋, 邓开明. 钯和铂金属在石墨烯表面不同生长机理第一性原理研究.  , 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [2] 宋青, 吉利, 权伟龙, 张磊, 田苗, 李红轩, 陈建敏. 含氢碳膜的生长机制: 分子动力学模拟研究低能量CH基团的作用.  , 2012, 61(3): 030701. doi: 10.7498/aps.61.030701
    [3] 陈明文, 倪锋, 王艳林, 王自东, 谢建新. 界面动力学对过冷熔体中球晶生长界面形态的影响.  , 2011, 60(6): 068103. doi: 10.7498/aps.60.068103
    [4] 许晟瑞, 张进城, 李志明, 周小伟, 许志豪, 赵广才, 朱庆伟, 张金凤, 毛维, 郝跃. 金属有机物化学气相沉积生长的a(1120)面GaN三角坑缺陷的消除研究.  , 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [5] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究.  , 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [6] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理.  , 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [7] 茅惠兵, 景为平, 俞建国, 王基庆, 王 力, 戴 宁. 邻晶面外延生长机制的动力学Monte Carlo模拟.  , 2006, 55(10): 5435-5440. doi: 10.7498/aps.55.5435
    [8] 张东平, 齐红基, 邵建达, 范瑞瑛, 范正修. 离子束溅射法薄膜生长中结瘤微缺陷的生长机理.  , 2005, 54(3): 1385-1389. doi: 10.7498/aps.54.1385
    [9] 谷锦华, 周玉琴, 朱美芳, 李国华, 丁 琨, 周炳卿, 刘丰珍, 刘金龙, 张群芳. 低温制备微晶硅薄膜生长机制的研究.  , 2005, 54(4): 1890-1894. doi: 10.7498/aps.54.1890
    [10] 张 超, 唐 鑫, 王永亮, 张庆瑜. 替位杂质对贵金属(111)表面稳定性影响的分子动力学研究.  , 2005, 54(12): 5791-5796. doi: 10.7498/aps.54.5791
    [11] 谢国锋, 王德武, 应纯同. 电子束激发原子对金属蒸发的影响.  , 2002, 51(10): 2286-2290. doi: 10.7498/aps.51.2286
    [12] 崔大复, 陈 凡, 赵 彤, 师文生, 陈正豪, 周岳亮, 吕惠宾, 杨国桢, 黄惠忠, 张宏霞. 激光分子束外延BaTiO3薄膜最顶层表面原子平面与薄膜生长机理.  , 2000, 49(9): 1878-1882. doi: 10.7498/aps.49.1878
    [13] 孙大亮, 于锡玲, 王 燕, 顾庆天. TGS晶体生长多形性和其表面扩散生长机制.  , 2000, 49(9): 1873-1877. doi: 10.7498/aps.49.1873
    [14] 牛智川, 周增圻, 林耀望, 李新峰, 张益, 胡雄伟, 吕振东, 袁之良, 徐仲英. InGaAs/GaAs应变脊形量子线分子束外延非平面生长研究.  , 1997, 46(5): 969-974. doi: 10.7498/aps.46.969
    [15] 韩飞, 马本堃. 外场存在时界面生长的重整化群研究.  , 1993, 42(11): 1812-1816. doi: 10.7498/aps.42.1812
    [16] 韩飞, 马本堃. 序参量守恒系统中空间相关的界面生长.  , 1993, 42(11): 1806-1811. doi: 10.7498/aps.42.1806
    [17] 潘士宏, 莫党, 秦关根, W. E. SPICER. 贵金属—GaAs(110)界面价带紫外光电子谱.  , 1987, 36(10): 1255-1263. doi: 10.7498/aps.36.1255
    [18] 吴自勤, 高巧君, 唐先德. Nb3Sn复合超导体晶粒生长机制.  , 1981, 30(3): 428-432. doi: 10.7498/aps.30.428
    [19] 闵乃本, 杨永顺. 直拉法YAG的小面生长和邻位面生长.  , 1979, 28(3): 285-296. doi: 10.7498/aps.28.285
    [20] 葛庭燧, 万耀光. 由汽态还原生长金属须的机制.  , 1961, 17(8): 34-40. doi: 10.7498/aps.17.34
计量
  • 文章访问数:  6337
  • PDF下载量:  629
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-19
  • 修回日期:  2014-12-26
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map