搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂GaN/AlN超晶格第一性原理计算研究

饶雪 王如志 曹觉先 严辉

引用本文:
Citation:

掺杂GaN/AlN超晶格第一性原理计算研究

饶雪, 王如志, 曹觉先, 严辉

First-principles calculation of doped GaN/AlN superlattices

Rao Xue, Wang Ru-Zhi, Cao Jue-Xian, Yan Hui
PDF
导出引用
  • 第一性原理计算方法在解释实验现象和预测新材料结构及其性质上有着重要作用. 因此, 通过基于密度泛函理论的第一性原理的方法, 本文系统地研究了Mg和Si掺杂闪锌矿和纤锌矿两种晶体结构的GaN/AlN超晶格体系中的能量稳定性以及电学性质. 结果表明: 在势阱层(GaN 层)中, 掺杂原子在体系中的掺杂形成能不随掺杂位置的变化而发生变化, 在势垒层(AlN层)中也是类似的情况, 这表明对于掺杂原子来说, 替代势垒层(或势阱层)中的任意阳离子都是等同的; 然而, 相比势阱层和势垒层的掺杂形成能却有很大的不同, 并且势阱层的掺杂形成能远低于势垒层的掺杂形成能, 即掺杂元素(MgGa, MgAl, SiGa和SiAl)在势阱区域的形成能更低, 这表明杂质原子更易掺杂于结构的势阱层中. 此外, 闪锌矿更低的形成能表明: 闪锌矿结构的超晶格体系比纤锌矿结构的超晶格体系更易于实现掺杂; 其中, 闪锌矿结构中, 负的形成能表明: 当Mg原子掺入闪锌矿结构的势阱层中会自发引起缺陷. 由此, 制备以闪锌矿结构超晶格体系为基底的p型半导体超晶格比制备n型半导体超晶格需要的能量更低并且更为容易制备. 对于纤锌矿体系来说, 制备p型和n型半导体的难易程度基本相同. 电子态密度对掺杂体系的稳定性和电学性质进一步分析发现, 掺杂均使得体系的带隙减小, 掺杂前后仍然为第一类半导体. 综上所述, 本文内容为当前实验中关于纤锌矿结构难以实现p型掺杂问题提供了一种新的技术思路, 即可通过调控相结构实现其p型掺杂.
    First-principles calculation is a quite powerful tool for explaining experimental phenomena and predicting the properties of new materials. Based on the first-principles calculation within the density functional theory, the energetic stabilities and electronic properties of Mg and Si doped GaN/AlN superlattices with wurtzite and zinc-blende structures are investigated. The results show that there is no variation in formation energy if the doping position is changed when the impurities are doped in the well (GaN) region, and the same situation also happens in the barriers (AlN) region. Thus it is equivalent for dopants to replace Ga atoms in the cation site of wells or Al atoms in the cation site of barrers. However, the formation energies of these dopants in the well region and the barrier region are different. Compared with the formation energy in the barrier region, it is much lower in the well region. That is to say, the impurities in the cation site (MgGa, MgAl, SiGa and SiAl) present lower formation energies in the wells of GaN/AlN SLs with wurtzite and zinc-blende structures. In addition, the impurities in zinc-blende GaN/AlN superlattices present lower formation energy than in the wurtzite structure. The negative formation energy illustrates that the defects are spontaneously formed if Mg-atom is mixed into the wells of the zinc-blende structure. Therefore, in experiment, for the zinc-blende superlattice structure, preparing p-type semiconductor needs less energy than preparing n-type semiconductor. And for the wurtzite superlattice structure, preparing p-type semiconductor needs the same energy as preparing n-type semiconductor. Furthermore, the relationships between the distribution of the electronic states and their structures are analyzed. It is found that the different kinds of dopants lead to different band bendings, owing to the modified polarization fields. The spatial distributions of electrons and holes, plotted by the partial charge densities, reveal that electrons and holes experience redistributions by Si or Mg dopants in different phases. The band gap of doped GaN/AlN superlattice decreases and the projected density of states also accounts for the change of defect formation energy. The calculated results provide a new reference for the fabrication of modulation-doping GaN/AlN SL under desired control, which could be considered to control phase.
    • 基金项目: 国家自然科学基金(批准号: 11274029, 51472010)、北京市青年拔尖人才培育计划(批准号: CIT&TCD201204037)、北京工业大学京华人才支持计划(批准号: 2014-JH-L07)和北京市属市管高等学校创新团队建设推进计划(批准号: IDHT20140506) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274029, 51472010), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions, China (Grant No. CIT&TCD201204037), the Jing-Hua Talents Project of Beijing University of Technology, China (Grant No. 2014-JH-L07) and the Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institution, China (Grant No. IDHT20140506).
    [1]

    Yu C H, Luo Q Z, Luo X D, Liu P S 2013 The Scientific World Journal 2013 931980

    [2]

    Simon J, Cao Y, Jena D 2010 Phys. Solid C 7 2386

    [3]

    Strak P, Kempisty P, Ptasinska M, Krukowski S 2013 J. Appl. Phys. 113 193706

    [4]

    Chichibu S F, Uedono A, Onuma T, Haskell B A, Chakraborty A, Koyama T, Fini P T, Keller S, Denbaars S P, Speck J S, Mishra U K, Nakamura S, Yamaguchi S, Kamiyama S, Amano H, Akasaki I, Han J, Sota T 2006 Nat. Mater. 5 810

    [5]

    Gorczyca I, Suski T, Christensen N E, Svane A 2012 Cryst. Growth Des. 12 3521

    [6]

    Bayram C 2012 J. Appl. Phys. 111 043107

    [7]

    Guillot F, Bellet A E, Monroy E, Tchernycheva M, Nevou L, Doyennette L, Julien F H, Dang L S, Remmele T, Albrecht M, Shibata T, Tanaka M 2006 J. Appl. Phys. 100 044326

    [8]

    Kröger R, Kruse C, Roder C, Hommel D, Rosenauer A 2006 Phys. Solid. B 243 1533

    [9]

    Veis M, Hagihara K, Nakagawa S, Inoue Y, Ishida A 2008 Phys. Stat. Solid C 5 1547

    [10]

    Landré O, Camacho D, Bougerol C, Niquet Y M, Favre N V, Renaud G, Renevier H, Daudin B 2010 Phys. Rev. B 81 153306

    [11]

    Schubert E F, Ploog K, Dämbkes H, Heime K 1984 Appl. Phys. A 33 63

    [12]

    Caroena G, Justo J F, Machado W V M, Assali L V C 2012 Diam. Relat. Mater. 27 64

    [13]

    Zhuo X L, Ni J C, Li J C, Lin W, Cai D J, Li S P, Kang J Y 2014 J. Appl. Phys. 115 124305

    [14]

    Hertkorn J, Brckner P, Gao C, Scholz F, Chuvilin A, Kaiser U, Wurstbauer U, Wegscheider W 2008 Phys. Stat. Solid C 5 1950

    [15]

    Edmunds C, Tang L, Shao J, Li D, Cervantes M, Gardner G, Zakharov D N, Manfra M J, Malis O 2012 Appl. Phys. Lett. 101 102104

    [16]

    Zhang W, Xue J S, Zhou X W, Zhang Y, Liu Z Y, Zhang J C, Hao Y 2012 Chin. Phys. B 21 077103

    [17]

    Liu N Y, Liu L, Wang L, Yang W, Li D, Li L, Cao W Y, Lu C M, Wan C H, Chen W H, Hu X D 2012 Chin. Phys. B 21 17806

    [18]

    Liu Z, Wang X L, Wang J X, Hu G X, Guo L C, Li J M 2007 Chin. Phys. Lett. 16 1467

    [19]

    Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471

    [20]

    Perdew J P, Vosko S H 1975 Phys. Stat. Solid B 23 K47

    [21]

    Hannahs T S, Brooks S, Kang W 1989 Phys. Rev. Lett. 63 1988

    [22]

    Kresse G 1994 Phys. Rev. B 49 14251

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 1396

    [24]

    Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521

    [25]

    Monkhorst H J, Pack J D 1975 Phys. Rev. B 13 792

    [26]

    Caro M A, Schulz S, O’Reilly E P 2013 Phys. Rev. B 88 5647

    [27]

    Cui X Y, Delley B, Stampfl C 2010 J. Appl. Phys. 108 103701

    [28]

    Zoroddu A, Bernardini F, Ruggerone P, Fiorentini V 2001 Phys. Rev. B 64 045208

    [29]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [30]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

    [31]

    Thompson M P, Auner G W, Zheleva T S, Jones K A, Simko S J, Hilfiker J N 2001 J. Appl. Phys. 89 3331

    [32]

    van de Walle C G, Chris G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [33]

    Gorczyca I, Christensen N E, Svane A 2012 Phys. Rev. B 66 3521

    [34]

    Caro M A, Schulz S, O’Reilly E P 2013 Phys. Rev. B 86 214103

  • [1]

    Yu C H, Luo Q Z, Luo X D, Liu P S 2013 The Scientific World Journal 2013 931980

    [2]

    Simon J, Cao Y, Jena D 2010 Phys. Solid C 7 2386

    [3]

    Strak P, Kempisty P, Ptasinska M, Krukowski S 2013 J. Appl. Phys. 113 193706

    [4]

    Chichibu S F, Uedono A, Onuma T, Haskell B A, Chakraborty A, Koyama T, Fini P T, Keller S, Denbaars S P, Speck J S, Mishra U K, Nakamura S, Yamaguchi S, Kamiyama S, Amano H, Akasaki I, Han J, Sota T 2006 Nat. Mater. 5 810

    [5]

    Gorczyca I, Suski T, Christensen N E, Svane A 2012 Cryst. Growth Des. 12 3521

    [6]

    Bayram C 2012 J. Appl. Phys. 111 043107

    [7]

    Guillot F, Bellet A E, Monroy E, Tchernycheva M, Nevou L, Doyennette L, Julien F H, Dang L S, Remmele T, Albrecht M, Shibata T, Tanaka M 2006 J. Appl. Phys. 100 044326

    [8]

    Kröger R, Kruse C, Roder C, Hommel D, Rosenauer A 2006 Phys. Solid. B 243 1533

    [9]

    Veis M, Hagihara K, Nakagawa S, Inoue Y, Ishida A 2008 Phys. Stat. Solid C 5 1547

    [10]

    Landré O, Camacho D, Bougerol C, Niquet Y M, Favre N V, Renaud G, Renevier H, Daudin B 2010 Phys. Rev. B 81 153306

    [11]

    Schubert E F, Ploog K, Dämbkes H, Heime K 1984 Appl. Phys. A 33 63

    [12]

    Caroena G, Justo J F, Machado W V M, Assali L V C 2012 Diam. Relat. Mater. 27 64

    [13]

    Zhuo X L, Ni J C, Li J C, Lin W, Cai D J, Li S P, Kang J Y 2014 J. Appl. Phys. 115 124305

    [14]

    Hertkorn J, Brckner P, Gao C, Scholz F, Chuvilin A, Kaiser U, Wurstbauer U, Wegscheider W 2008 Phys. Stat. Solid C 5 1950

    [15]

    Edmunds C, Tang L, Shao J, Li D, Cervantes M, Gardner G, Zakharov D N, Manfra M J, Malis O 2012 Appl. Phys. Lett. 101 102104

    [16]

    Zhang W, Xue J S, Zhou X W, Zhang Y, Liu Z Y, Zhang J C, Hao Y 2012 Chin. Phys. B 21 077103

    [17]

    Liu N Y, Liu L, Wang L, Yang W, Li D, Li L, Cao W Y, Lu C M, Wan C H, Chen W H, Hu X D 2012 Chin. Phys. B 21 17806

    [18]

    Liu Z, Wang X L, Wang J X, Hu G X, Guo L C, Li J M 2007 Chin. Phys. Lett. 16 1467

    [19]

    Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471

    [20]

    Perdew J P, Vosko S H 1975 Phys. Stat. Solid B 23 K47

    [21]

    Hannahs T S, Brooks S, Kang W 1989 Phys. Rev. Lett. 63 1988

    [22]

    Kresse G 1994 Phys. Rev. B 49 14251

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 1396

    [24]

    Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521

    [25]

    Monkhorst H J, Pack J D 1975 Phys. Rev. B 13 792

    [26]

    Caro M A, Schulz S, O’Reilly E P 2013 Phys. Rev. B 88 5647

    [27]

    Cui X Y, Delley B, Stampfl C 2010 J. Appl. Phys. 108 103701

    [28]

    Zoroddu A, Bernardini F, Ruggerone P, Fiorentini V 2001 Phys. Rev. B 64 045208

    [29]

    Kim K, Lambrecht W R L, Segall B 1996 Phys. Rev. B 53 16310

    [30]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

    [31]

    Thompson M P, Auner G W, Zheleva T S, Jones K A, Simko S J, Hilfiker J N 2001 J. Appl. Phys. 89 3331

    [32]

    van de Walle C G, Chris G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [33]

    Gorczyca I, Christensen N E, Svane A 2012 Phys. Rev. B 66 3521

    [34]

    Caro M A, Schulz S, O’Reilly E P 2013 Phys. Rev. B 86 214103

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究.  , 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析.  , 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究.  , 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [5] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算.  , 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [6] 王晓旭, 赵琉涛, 成海霞, 钱萍. La3Co29-xFexSi4B10的择优占位、电子结构和晶格振动性质的理论研究.  , 2016, 65(5): 057103. doi: 10.7498/aps.65.057103
    [7] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [8] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [9] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究.  , 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [10] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [12] 袁娣, 黄多辉, 罗华锋. Be, O共掺杂实现p型AlN的第一性原理研究.  , 2012, 61(14): 147101. doi: 10.7498/aps.61.147101
    [13] 濮春英, 李洪婧, 唐鑫, 张庆瑜. N掺杂Cu2O薄膜的光学性质及第一性原理分析.  , 2012, 61(4): 047104. doi: 10.7498/aps.61.047104
    [14] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质.  , 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [15] 袁娣, 罗华锋, 黄多辉, 王藩侯. Zn,O共掺杂实现p型AlN的第一性原理研究.  , 2011, 60(7): 077101. doi: 10.7498/aps.60.077101
    [16] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究.  , 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [17] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [18] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究.  , 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [19] 徐 慧, 邓超生, 刘小良, 马松山, 伍晓赞. 一维长程关联无序系统中的电子态.  , 2007, 56(3): 1643-1648. doi: 10.7498/aps.56.1643
    [20] 侯 永, 袁建民. 第一性原理对金的高压相变和零温物态方程的计算.  , 2007, 56(6): 3458-3463. doi: 10.7498/aps.56.3458
计量
  • 文章访问数:  7879
  • PDF下载量:  4560
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-16
  • 修回日期:  2014-12-23
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map