搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载激光多普勒测风雷达鉴频系统仿真(Ⅱ):基于Fabry-Perot标准具的Rayleigh通道大气风速反演研究

张日伟 孙学金 严卫 赵剑 刘磊 李岩 张传亮 周俊浩

引用本文:
Citation:

星载激光多普勒测风雷达鉴频系统仿真(Ⅱ):基于Fabry-Perot标准具的Rayleigh通道大气风速反演研究

张日伟, 孙学金, 严卫, 赵剑, 刘磊, 李岩, 张传亮, 周俊浩

Simulation of frequency discrimination for spaceborne Doppler wind lidar (Ⅱ):Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer

Zhang Ri-Wei, Sun Xue-Jin, Yan Wei, Zhao Jian, Liu Lei, Li Yan, Zhang Chuan-Liang, Zhou Jun-Hao
PDF
导出引用
  • 基于星载激光多普勒测风雷达工作原理,构建了基于连续双通道Fabry-Perot(F-P)标准具的鉴频仿真系统,仿真研究了Rayleigh通道大气风速反演算法,系统分析了Rayleigh-Brillouin效应和Mie干扰信号对Rayleigh通道反演大气视线(LOS)风速的影响,并利用无线电探空数据集仿真结果统计分析了Rayleigh通道大气水平视线(HLOS)风速反演误差. 结果表明,基于连续双通道F-P标准具的Rayleigh通道可反演中高层大气风速;Rayleigh-Brillouin效应和Mie干扰信号影响Rayleigh通道LOS风速反演精度;Rayleigh通道风速反演对温度精度要求最高,在晴空条件下可忽略Mie干扰信号的影响;不考虑Brillouin效应时,高度2 km以下Rayleigh通道无法反演HLOS风速,高度2 km以上Rayleigh通道反演的HLOS风速误差小于0.4 m·s-1,风速标准差在1–4 m·s-1之间;同Mie通道一样,气溶胶和云的分布影响Rayleigh通道HLOS风速反演误差. 研究结果对发展星载激光雷达测风技术具有重要参考意义.
    Based on the principle of spaceborne Doppler wind lidar, a simulation system of frequency discrimination is built based on the double sequential Fabry-Perot (F-P) interferometer. The wind retrieval algorithm of Rayleigh channel is simulated and studied. The influence on the retrieved atmospheric line-of-sight (LOS) wind speed in Rayleigh channel by the Rayleigh-Brillouin effect and Mie contamination is systematically analyzed. The horizontal line-of-sight (HLOS) wind error is analysed using the simulated result of the radiosonde dataset. The results show that the wind speeds of the middle and upper atmosphere can be retrieved in Rayleigh channel based on the double sequential F-P interferometer; the Rayleigh-Brillouin effect and Mie contamination influence the accuracy of LOS wind speed retrieval in Rayleigh channel; the Rayleigh channel requires more accurate temperature; Mie contamination can be ignored in clear atmosphere; when Brillouin effect is not considered, below 2 km, the HLOS wind speed cannot be retrieved in Rayleigh channel, and above 2 km, the HLOS wind speed error in Rayleigh channel is less than 0.4 m/s and its standard deviation is 1-4 m/s. Just as the Mie channel, distributions of aerosol and cloud have an influence on wind error for spaceborne Doppler wind lidar in Rayleigh channel. The research results have an important reference value for the development of spaceborne lidar wind technology.
    • 基金项目: 国家自然科学基金(批准号:41205125)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41205125).
    [1]

    World Meteorological Organization 1998 WMO Satellite Reports SAT-21.WMO/TD No.913

    [2]

    Zhang R W, Sun X J, Yan W, Liu L, Li Y, Zhao J, Yan W X, Li H R 2014 Acta Phys. Sin. 63 140702 (in Chinese) [张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然 2014 63 140702]

    [3]

    Mckay J A 1998 Appl. Opt. 37 6480

    [4]

    Sun D S, Zhong Z Q, Zhou J, Hu H L, Kobayashi T 2005 Opt. Rev. 12 409

    [5]

    Tang L, Wang Y T, Shu Z F, Dong J H, Wang G C, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S, Cha H 2010 Chin. Phys. Lett. 27 114207

    [6]

    Zhu X P, Liu J Q, Chen W B 2010 Chin. J. Lasers 37 2005 (in Chinese) [竹孝鹏, 刘继桥, 陈卫标 2010 中国激光 37 2005]

    [7]

    Tang L, Wang C R, Wu H B, Dong J H 2012 Chin. Phys. Lett. 29 014213

    [8]

    Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211

    [9]

    Shen F H, Sun D S, Liu C L, Qiu C Q, Shu Z F 2013 Acta Phys. Sin. 62 220702 (in Chinese) [沈法华, 孙东松, 刘成林, 仇成群, 舒志峰 2013 62 220702]

    [10]

    Killeen T L, Hays P B 1984 Appl. Opt. 23 612

    [11]

    Xia H Y, Sun D S, Zhong Z Q, Wang B X, Chen M 2006 Laser & Infrared 36 29 (in Chinese) [夏海云, 孙东松, 钟志庆, 王邦新, 陈敏 2006 激光与红外 36 29]

    [12]

    Shen F H, Shu Z F, Sun D S, Wang Z C, Xue X H, Chen T D, Dou X K 2011 Acta Phys. Sin. 60 060704 (in Chinese) [沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康 2011 60 060704]

    [13]

    Shen F H, Shu Z F, Sun D S, Wang Z C, Xue X H, Chen T D, Dou X K 2012 Acta Phys. Sin. 61 030702 (in Chinese) [沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康 2012 61 030702]

    [14]

    Born M, Wolf E (Translated by Yang J S) 1978 Principles of Optics (Beijing: Science Press) pp424-444 (in Chinese) [玻恩M, 沃耳夫E著 (杨葭荪译) 1978 光学原理 (北京: 科学出版社) 第424–444页]

    [15]

    Flesia C, Korb C. L 1999 Appl. Opt. 38 432

    [16]

    Chi R L, Feng S M, Zhong Z Q, Sun D S, Zhou J, Hu H L 2006 High Power Laser Part. Beams 18 36

    [17]

    Reitebuch O, Lemmerz C, Nagel E, Paffrath U, Durand Y, Endemann M, Fabre F, Chaloupy M 2009 J. Atmos. Ocean. Tech. 26 2501

    [18]

    Paffrath U, Lemmerz C, Reitebuch O, Witschas B, Nikolaus I, Freudenthaler V 2009 J. Atmos. Ocean. Tech. 26 2516

    [19]

    Garnier A, Chanin M L 1992 Appl. Phys. B 55 35

    [20]

    Flesia C, Korb C L 1999 Appl. Opt. 38 432

    [21]

    Marseille G J, Stoffelen A 2003 Q. J. R. Meteorol. Soc. 129 3079

    [22]

    Chanin, M L, Garnier A, Hauchecorne A, Porteneuve J 1989 Geophys. Res. Lett. 16 1273

    [23]

    Dabas A, Denneulin M L, Flamant P, Loth C, Garnier A, Dolfi-Bouteyre A 2008 Tellus 60A 206

    [24]

    Tenti G, Boley C D, Desai R C 1974 Can. J. Phys. 52 285

    [25]

    Sun X J, Zhang R W, Marseille G J, Stoffelen A, Donovan D, Liu L, Zhao J 2014 Atmos. Meas. Tech. Discuss. 7 1393

  • [1]

    World Meteorological Organization 1998 WMO Satellite Reports SAT-21.WMO/TD No.913

    [2]

    Zhang R W, Sun X J, Yan W, Liu L, Li Y, Zhao J, Yan W X, Li H R 2014 Acta Phys. Sin. 63 140702 (in Chinese) [张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然 2014 63 140702]

    [3]

    Mckay J A 1998 Appl. Opt. 37 6480

    [4]

    Sun D S, Zhong Z Q, Zhou J, Hu H L, Kobayashi T 2005 Opt. Rev. 12 409

    [5]

    Tang L, Wang Y T, Shu Z F, Dong J H, Wang G C, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S, Cha H 2010 Chin. Phys. Lett. 27 114207

    [6]

    Zhu X P, Liu J Q, Chen W B 2010 Chin. J. Lasers 37 2005 (in Chinese) [竹孝鹏, 刘继桥, 陈卫标 2010 中国激光 37 2005]

    [7]

    Tang L, Wang C R, Wu H B, Dong J H 2012 Chin. Phys. Lett. 29 014213

    [8]

    Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211

    [9]

    Shen F H, Sun D S, Liu C L, Qiu C Q, Shu Z F 2013 Acta Phys. Sin. 62 220702 (in Chinese) [沈法华, 孙东松, 刘成林, 仇成群, 舒志峰 2013 62 220702]

    [10]

    Killeen T L, Hays P B 1984 Appl. Opt. 23 612

    [11]

    Xia H Y, Sun D S, Zhong Z Q, Wang B X, Chen M 2006 Laser & Infrared 36 29 (in Chinese) [夏海云, 孙东松, 钟志庆, 王邦新, 陈敏 2006 激光与红外 36 29]

    [12]

    Shen F H, Shu Z F, Sun D S, Wang Z C, Xue X H, Chen T D, Dou X K 2011 Acta Phys. Sin. 60 060704 (in Chinese) [沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康 2011 60 060704]

    [13]

    Shen F H, Shu Z F, Sun D S, Wang Z C, Xue X H, Chen T D, Dou X K 2012 Acta Phys. Sin. 61 030702 (in Chinese) [沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康 2012 61 030702]

    [14]

    Born M, Wolf E (Translated by Yang J S) 1978 Principles of Optics (Beijing: Science Press) pp424-444 (in Chinese) [玻恩M, 沃耳夫E著 (杨葭荪译) 1978 光学原理 (北京: 科学出版社) 第424–444页]

    [15]

    Flesia C, Korb C. L 1999 Appl. Opt. 38 432

    [16]

    Chi R L, Feng S M, Zhong Z Q, Sun D S, Zhou J, Hu H L 2006 High Power Laser Part. Beams 18 36

    [17]

    Reitebuch O, Lemmerz C, Nagel E, Paffrath U, Durand Y, Endemann M, Fabre F, Chaloupy M 2009 J. Atmos. Ocean. Tech. 26 2501

    [18]

    Paffrath U, Lemmerz C, Reitebuch O, Witschas B, Nikolaus I, Freudenthaler V 2009 J. Atmos. Ocean. Tech. 26 2516

    [19]

    Garnier A, Chanin M L 1992 Appl. Phys. B 55 35

    [20]

    Flesia C, Korb C L 1999 Appl. Opt. 38 432

    [21]

    Marseille G J, Stoffelen A 2003 Q. J. R. Meteorol. Soc. 129 3079

    [22]

    Chanin, M L, Garnier A, Hauchecorne A, Porteneuve J 1989 Geophys. Res. Lett. 16 1273

    [23]

    Dabas A, Denneulin M L, Flamant P, Loth C, Garnier A, Dolfi-Bouteyre A 2008 Tellus 60A 206

    [24]

    Tenti G, Boley C D, Desai R C 1974 Can. J. Phys. 52 285

    [25]

    Sun X J, Zhang R W, Marseille G J, Stoffelen A, Donovan D, Liu L, Zhao J 2014 Atmos. Meas. Tech. Discuss. 7 1393

  • [1] 李文文, 惠宁菊, 李存霞, 刘洋河, 方妍, 李凌青, 王彦龙, 唐远河. 多普勒非对称空间外差仪探测高层大气风速的三种方法比较研究.  , 2023, 72(24): 240601. doi: 10.7498/aps.72.20231292
    [2] 王建波, 钱进, 刘忠有, 陆祖良, 黄璐, 杨雁, 殷聪, 李同保. 计算电容中Fabry-Perot干涉仪测量位移的相位修正方法.  , 2016, 65(11): 110601. doi: 10.7498/aps.65.110601
    [3] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术.  , 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [4] 青海银, 张援农, 周晨, 赵正予, 陈罡. 基于MST雷达垂直风速的大气温度剖面反演.  , 2014, 63(9): 094301. doi: 10.7498/aps.63.094301
    [5] 张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然. 星载激光多普勒测风雷达鉴频系统仿真(I):基于Fizeau干涉仪的Mie通道大气风速反演研究.  , 2014, 63(14): 140702. doi: 10.7498/aps.63.140702
    [6] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法.  , 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [7] 沈法华, 孙东松, 刘成林, 仇成群, 舒志峰. 基于单Fabry-Perot标准具的双频率多普勒激光雷达数据反演技术.  , 2013, 62(22): 220702. doi: 10.7498/aps.62.220702
    [8] 王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂. 单光子调制锁定Fabry-Perot腔.  , 2012, 61(20): 204203. doi: 10.7498/aps.61.204203
    [9] 白岩, 赵卫疆, 任德明, 曲彦臣, 刘闯, 袁晋鹤, 钱黎明, 陈振雷. 基于有源Fabry-Perot腔的激光脉冲延时自外差研究.  , 2012, 61(9): 094218. doi: 10.7498/aps.61.094218
    [10] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙. Fabry-Perot腔谐振对横电波激励下亚波长一维金属光栅的异常透射性的作用.  , 2011, 60(2): 024217. doi: 10.7498/aps.60.024217
    [11] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究.  , 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [12] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究.  , 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [13] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究.  , 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [14] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换.  , 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [15] 安 义, 王云才, 张明江, 牛生晓, 王安帮. 基于Fabry-Perot半导体激光器实现全光波长转换及其最优纵模选择.  , 2008, 57(8): 4995-5000. doi: 10.7498/aps.57.4995
    [16] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究.  , 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [17] 汪少林, 苏 嘉, 赵培涛, 曹开法, 胡顺星, 魏合理, 谭 锟, 胡欢陵. 基于三级Fabry-Perot标准具的纯转动拉曼测温激光雷达.  , 2008, 57(6): 3941-3947. doi: 10.7498/aps.57.3941
    [18] 钟权德. 内含等离子体的Fabry-Perot干涉仪的光学开关和双稳现象.  , 1985, 34(2): 182-187. doi: 10.7498/aps.34.182
    [19] 贺贤土. 激励Brillouin散射非线性致稳过程的阻尼效应.  , 1982, 31(7): 882-894. doi: 10.7498/aps.31.882
    [20] 李永贵, 张洪钧, 杨君慧, 高存秀. 混合型非线性Fabry-Perot标准具的光学双稳特性.  , 1982, 31(4): 446-459. doi: 10.7498/aps.31.446
计量
  • 文章访问数:  5794
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-25
  • 修回日期:  2014-04-02
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map