-
利用高精度的量子化学从头计算MRCI+Q方法结合相关一致aug-cc-pVQZ基组计算了磷化硼分子X3,3-,5和5-态的势能曲线,计算所得的电子态在大键长位置处收敛于同一个离解极限B(2Pu)+P(4Su). 为了得到更精确的结果,计算中首次纳入了旋轨耦合(SOC)效应,使得BP分子的4个-S态分裂成为15个态,其中30+ 态被确定为基态. 此外,SOC效应还使两个三重态X3和3-分裂出的0+和1态的势能曲线产生了避免交叉,表明在当前的计算中考虑SOC效应是非常必要的. 利用LEVEL8.0程序对计算所得的-S态和态的势能曲线进行拟合,得到了相应的光谱常数,通过与其他理论和实验工作进行比较,可知我们的结果更加精确、完整,可以为实验和理论方面进一步研究BP分子的光谱性质提供可靠的参考.A high-precision quantum chemistry ab initio multi-reference configuration interaction method with aug-cc-pVQZ basis sets has been used to calculate the four states of BP molecule. The four -S states are X3, 3-, 5 and 5-, which are correlated to the lowest dissociation limit of B(2Pu)+P(4Su). Analysis of the electronic structures of -S states shows that the -S electronic states are essentially multi-configurational. We take the spin-orbit interaction into account for the first time so far as we know, which makes the four -S states split into fifteen states. 30+ state is confirmed to be the ground state. The SOC effect is essential for the BP molecule, which leads to the avoided crossings for 0+ and 1 states from X3 and 3-. Based on the PECs of -S and states, the accurate spectroscopic constants are obtained by solving the radial Schrdinger equation. The spectroscopic results may be conducive to further research on BP molecule in experiment and theory.
-
Keywords:
- BP molecule /
- MRCI+Q /
- potential energy curve (PEC) /
- spin-orbit coupling (SOC)
[1] Zhang G F 1995 Infrared Technology 5 23 (in Chinese)[张贵锋1995 红外技术5 23]
[2] Min X M, Cai K F, Nan C W 1998 Chinese Journal of Computation Phsics 15 445 (in Chinese) [闵新民, 蔡克峰, 南策文1998 计算物理15 445]
[3] Gingerich K A 1972 The Journal of Chemical Physics 56 4239
[4] Boldyrev A I, Simons J 1993 J. Phys. Chem. 97 6149
[5] Gan Z T, Grant D J, Harrison R J, Dixon D A 2006 J. Chem. Phys. 125 124311
[6] Linguerri R, Komiha N, Oswald R, Mitrushchenkov A, Rosmus P 2008 Chem. Phys. 346 1
[7] Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强, 杨传路, 苏涛, 王美山 2009 58 6873]
[8] Li R, Lian K Y, Li Q N, Miao F J, Yan B, Jin M X 2012 Chin. Phys. B 21 123102
[9] Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103
[10] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663
[11] Werner H-J, Knowles P J 1985 J. Chem. Phys. 82 5053
[12] Knowles P J, Werner H-J 1985 Chem. Phys. Lett. 115 259
[13] Werner H-J, Knowles P J 1985 J. Chem. Phys. 89 5803
[14] Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514
[15] Berning A, Schweizer M, Werner H-J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
[16] Yu K, Zhang X M, Liu Y F 2013 Acta Phys. Sin. 62 063301 (in Chinese) [于坤, 张晓美, 刘玉芳2013 62 063301]
[17] Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards)
-
[1] Zhang G F 1995 Infrared Technology 5 23 (in Chinese)[张贵锋1995 红外技术5 23]
[2] Min X M, Cai K F, Nan C W 1998 Chinese Journal of Computation Phsics 15 445 (in Chinese) [闵新民, 蔡克峰, 南策文1998 计算物理15 445]
[3] Gingerich K A 1972 The Journal of Chemical Physics 56 4239
[4] Boldyrev A I, Simons J 1993 J. Phys. Chem. 97 6149
[5] Gan Z T, Grant D J, Harrison R J, Dixon D A 2006 J. Chem. Phys. 125 124311
[6] Linguerri R, Komiha N, Oswald R, Mitrushchenkov A, Rosmus P 2008 Chem. Phys. 346 1
[7] Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强, 杨传路, 苏涛, 王美山 2009 58 6873]
[8] Li R, Lian K Y, Li Q N, Miao F J, Yan B, Jin M X 2012 Chin. Phys. B 21 123102
[9] Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103
[10] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663
[11] Werner H-J, Knowles P J 1985 J. Chem. Phys. 82 5053
[12] Knowles P J, Werner H-J 1985 Chem. Phys. Lett. 115 259
[13] Werner H-J, Knowles P J 1985 J. Chem. Phys. 89 5803
[14] Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514
[15] Berning A, Schweizer M, Werner H-J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
[16] Yu K, Zhang X M, Liu Y F 2013 Acta Phys. Sin. 62 063301 (in Chinese) [于坤, 张晓美, 刘玉芳2013 62 063301]
[17] Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards)
计量
- 文章访问数: 7717
- PDF下载量: 755
- 被引次数: 0