搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢气引入对宽光谱Mg和Ga共掺杂ZnO透明导电薄膜的特性影响

田淙升 陈新亮 刘杰铭 张德坤 魏长春 赵颖 张晓丹

引用本文:
Citation:

氢气引入对宽光谱Mg和Ga共掺杂ZnO透明导电薄膜的特性影响

田淙升, 陈新亮, 刘杰铭, 张德坤, 魏长春, 赵颖, 张晓丹

Influence of H2 introduction on wide-spectrum Mg and Ga co-doped ZnO transparent conductive thin films

Tian Cong-Sheng, Chen Xin-Liang, Liu Jie-Ming, Zhang De-Kun, Wei Chang-Chun, Zhao Ying, Zhang Xiao-Dan
PDF
导出引用
  • 为适应宽光谱高效率硅基薄膜太阳电池的应用需求,本文尝试采用直流磁控溅射技术在553 K衬底温度下生长氢化Mg和Ga共掺杂ZnO(HMGZO)透明导电氧化物(TCO)薄膜. 通过对薄膜微观结构、表面形貌、电学以及光学性能的测试和分析,详细地研究了氢气(H2)流量(0–16.0 sccm)对HMGZO薄膜结晶特性及光电性能的影响. 实验结果表明:生长获得的HMGZO薄膜均为六角纤锌矿结构的多晶薄膜,择优取向为(002)晶面生长方向. 薄膜的生长速率随着氢气流量的增加呈现逐渐减小趋势,主要归因于溅射产额的减小. 适当的氢气引入会引起晶粒尺寸的增加. 随着氢气流量由0增加至4.0 sccm,ZnO 薄膜电阻率从177 Ω·cm急剧减小至7.2×10-3 Ω·cm,主要是由于H施主的引入显著地增加了载流子浓度;然而进一步增加氢气流量(4.0–16.0 sccm)造成电阻率的轻微增加,主要归因于载流子浓度的减小以及过多氢杂质引入造成杂质散射的增加. 所有生长获得的HMGZO薄膜平均光学透过率在波长λ~320–1100 nm范围内可达87%以上. 由于Mg的作用及Burstein-Moss效应的影响造成了带隙展宽,带隙变化范围~3.49–3.70 eV,其中最大光学带隙Eg可达~3.70 eV.
    To meet the demands of high efficient silicon thin film solar cells, transparent conductive hydrogenated Mg and Ga co-doped ZnO (HMGZO) thin films were deposited via pulsed direct current (DC) magnetron sputtering on glass substrates at a substrate temperature of 553 K. The micro-structural, morphological, electrical, and optical properties of HMGZO thin films were investigated at various H2 flow rates. Experimental results show that all the HMGZO thin films are polycrystalline with a hexagonal wurtzite structure exhibiting a preferred (002) crystal plane orientation. Appropriate H2 flow rate increases grain size and also enhances the RMS roughness. The deposition rate of HMGZO films decreases with the increase of H2 flow rate due to the decrease of sputtering yield. Resistivity of HMGZO thin films decreases rapidly from 117 to 7.2×10-3 Ω·cm with increasing H2 flow rate from 0 to 4.0 sccm. With further increasing H2 flow rate (4.0–16.0 sccm), the resistivity increases slightly due to the reduced carrier concentration and excessive H atoms as impurity. Optical transmittance of all the HMGZO thin films is higher than 87.7% in the wavelength range from 320 to 1100 nm. Burstein-Moss band-filling determined by carrier concentrations and the incorporation of Mg atoms together contribute to the band-gap (Eg) widening phenomenon. The band gap Eg varies from ~ 3.49–3.70 eV and the maximum Eg of 3.70 eV is obtained at a H2 flow rate of 16.0 sccm.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CBA00705,2011CBA00706,2011CBA00707)、天津市应用基础及前沿技术研究计划(批准号:13JCZDJC26900)、天津市重大科技支撑计划项目(批准号:11TXSYGX22100)、国家高技术研究发展计划(批准号:2013AA050302)和中央高校基本科研业务费专项资金(批准号:65010341)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2011CBA00705, 2011CBA00706, 2011CBA00707), the Tianjin Applied Basic Research Project and Cutting-edge Technology Research Plan, China (Grant No. 13JCZDJC26900), the Tianjin Major Science and Technology Support Project, China (Grant No. 11TXSYGX22100), the National High Technology Research and Development Program of China (Grant No. 2013AA050302), and the Fundamental Research Funds for the Central Universities of China (Grant No. 65010341).
    [1]

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [2]

    Li H, Wang N, Liu X 2008 Opt. Express 16 194

    [3]

    Mller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [4]

    Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 62 120101]

    [5]

    Wang G H, Zhao L, Yan B J, Chen J W, Wang G, Diao H W, Wang W J 2013 Chin. Phys. B 22 68102

    [6]

    Fan H B, Zheng X L, Wu S C, Liu Z G, Yao H B 2012 Chin. Phys. B 21 38101

    [7]

    Zhang C, Cheng X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D, Geng X H 2012 Acta Phys. Sin. 61 238101 [张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012 61 238101]

    [8]

    Moss T S 1954 Proc. Phys. Soc. Sect. B 67 775

    [9]

    Burstein E 1954 Phys. Rev. 93 632

    [10]

    Wang F, Chen X L, Geng X H, Zhang D K, Wei C C, Huang Q, Zhang X D, Zhao Y 2012 Appl. Surf. Sci. 258 9005

    [11]

    Jang S H, Chichibu S F 2012 J. Appl. Phys. 112 073503

    [12]

    Shin S W, Kim I Y, Lee G H, Agawane G L, Mohokar A V, Heo G S, Kim J H, Lee J Y 2011 Cryst. Growth Des. 11 4819

    [13]

    Gu X, Zhu L, Ye Z, Ma Q, He H, Zhang Y, Zhao B 2008 Sol. Energy Mater. Sol. Cells 92 343

    [14]

    Matsubara K, Tampo H, Shibata H, Yamada A, Fons P, Iwata K, Niki S 2004 Appl. Phys. Lett. 85 1374

    [15]

    Cohen D J, Ruthe K C, Barnett S A 2004 J. Appl. Phys. 96 459

    [16]

    Duenow J N, Gessert T A, Wood D M, Young D L, Coutts T J 2008 J. Non-cryst. Solids. 354 2787

    [17]

    Park Y R, Kim J, Kim Y S 2009 Appl. Surf. Sci. 255 9010

    [18]

    Van De Walle C G 2000 Phys. Rev. Lett. 85 1012

    [19]

    Van De Walle C G, Neugebauer J 2003 Nature 423 626

    [20]

    Janotti A, Van De Walle C G 2007 Nature Mater. 6 44

    [21]

    Lavrov E V, Börrnert F, Weber J 2006 Physica B 376-377 694

    [22]

    Shi G A, Stavola M, Pearton S J, Thieme M, Lavrov E V, Weber J 2005 Phys. Rev. B 72 195211

    [23]

    Zhou Z, Kato K, Komaki T, Yoshino M, Yukawa H, Morinaga M 2004 Int. J. Hydrogen Energ 29 323

    [24]

    Tark S J, Ok Y W, Kang M G, Lim H J, Kim W M, Kim D 2009 J. Electroceram. 23 548

    [25]

    Song D, Aberle A G, Xia J 2002 Appl. Surf. Sci. 195 291

    [26]

    Prasada Rao T, Santhosh Kumar M C, Sooraj Hussain N 2012 J. Alloy. Compd. 541 495

    [27]

    Zhang X D, Guo M L, Liu C L, Zhang L A, Zhang W Y, Ding Y Q, Wu Q, Feng X 2008 Eur. Phys. J. B 62 417

  • [1]

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539

    [2]

    Li H, Wang N, Liu X 2008 Opt. Express 16 194

    [3]

    Mller J, Rech B, Springer J, Vanecek M 2004 Sol. Energy 77 917

    [4]

    Yu X M, Zhao J, Hou G F, Zhang J J, Zhang X D, Zhao Y 2013 Acta Phys. Sin. 62 120101 (in Chinese) [于晓明, 赵静, 侯国付, 张建军, 张晓丹, 赵颖 2013 62 120101]

    [5]

    Wang G H, Zhao L, Yan B J, Chen J W, Wang G, Diao H W, Wang W J 2013 Chin. Phys. B 22 68102

    [6]

    Fan H B, Zheng X L, Wu S C, Liu Z G, Yao H B 2012 Chin. Phys. B 21 38101

    [7]

    Zhang C, Cheng X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D, Geng X H 2012 Acta Phys. Sin. 61 238101 [张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012 61 238101]

    [8]

    Moss T S 1954 Proc. Phys. Soc. Sect. B 67 775

    [9]

    Burstein E 1954 Phys. Rev. 93 632

    [10]

    Wang F, Chen X L, Geng X H, Zhang D K, Wei C C, Huang Q, Zhang X D, Zhao Y 2012 Appl. Surf. Sci. 258 9005

    [11]

    Jang S H, Chichibu S F 2012 J. Appl. Phys. 112 073503

    [12]

    Shin S W, Kim I Y, Lee G H, Agawane G L, Mohokar A V, Heo G S, Kim J H, Lee J Y 2011 Cryst. Growth Des. 11 4819

    [13]

    Gu X, Zhu L, Ye Z, Ma Q, He H, Zhang Y, Zhao B 2008 Sol. Energy Mater. Sol. Cells 92 343

    [14]

    Matsubara K, Tampo H, Shibata H, Yamada A, Fons P, Iwata K, Niki S 2004 Appl. Phys. Lett. 85 1374

    [15]

    Cohen D J, Ruthe K C, Barnett S A 2004 J. Appl. Phys. 96 459

    [16]

    Duenow J N, Gessert T A, Wood D M, Young D L, Coutts T J 2008 J. Non-cryst. Solids. 354 2787

    [17]

    Park Y R, Kim J, Kim Y S 2009 Appl. Surf. Sci. 255 9010

    [18]

    Van De Walle C G 2000 Phys. Rev. Lett. 85 1012

    [19]

    Van De Walle C G, Neugebauer J 2003 Nature 423 626

    [20]

    Janotti A, Van De Walle C G 2007 Nature Mater. 6 44

    [21]

    Lavrov E V, Börrnert F, Weber J 2006 Physica B 376-377 694

    [22]

    Shi G A, Stavola M, Pearton S J, Thieme M, Lavrov E V, Weber J 2005 Phys. Rev. B 72 195211

    [23]

    Zhou Z, Kato K, Komaki T, Yoshino M, Yukawa H, Morinaga M 2004 Int. J. Hydrogen Energ 29 323

    [24]

    Tark S J, Ok Y W, Kang M G, Lim H J, Kim W M, Kim D 2009 J. Electroceram. 23 548

    [25]

    Song D, Aberle A G, Xia J 2002 Appl. Surf. Sci. 195 291

    [26]

    Prasada Rao T, Santhosh Kumar M C, Sooraj Hussain N 2012 J. Alloy. Compd. 541 495

    [27]

    Zhang X D, Guo M L, Liu C L, Zhang L A, Zhang W Y, Ding Y Q, Wu Q, Feng X 2008 Eur. Phys. J. B 62 417

  • [1] 吴诗漫, 陶思敏, 吉爱闯, 管绍杭, 肖剑荣. 硒化温度对MoSe2薄膜结构和光学带隙的影响.  , 2024, 73(19): 196801. doi: 10.7498/aps.73.20240611
    [2] 田杉杉, 高倩, 高泽冉, 熊雨晨, 丛日东, 于威. 单靶磁控溅射Cu(In, Ga)Se2太阳电池的背接触界面设计.  , 2024, 73(17): 178801. doi: 10.7498/aps.73.20240732
    [3] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究.  , 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [4] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响.  , 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [5] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究.  , 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [6] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响.  , 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [7] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能.  , 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [8] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析.  , 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [9] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究.  , 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [10] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜.  , 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [11] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响.  , 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [12] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响.  , 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [13] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究.  , 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [14] 张 辉, 刘应书, 刘文海, 王宝义, 魏 龙. 基片温度与氧分压对磁控溅射制备氧化钒薄膜的影响.  , 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [15] 辛 萍, 孙成伟, 秦福文, 文胜平, 张庆瑜. 反应磁控溅射ZnO/MgO多量子阱的光致荧光光谱分析.  , 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [16] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究.  , 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [17] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析.  , 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [18] 周小莉, 杜丕一. 磁控溅射法制备的CaCu3Ti4O12薄膜.  , 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [19] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型.  , 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [20] 谢大弢, 赵夔, 王莉芳, 朱凤, 全胜文, 孟铁军, 张保澄, 陈佳洱. 用磁控溅射和真空硒化退火方法制备高质量的铜铟硒多晶薄膜.  , 2002, 51(6): 1377-1382. doi: 10.7498/aps.51.1377
计量
  • 文章访问数:  5677
  • PDF下载量:  933
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-13
  • 修回日期:  2013-10-22
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map