-
We investigate the entanglement dynamics of two cavities interacting respectively with reservoir in non-inertial frames. We consider not only the influence of acceleration, but also the influence of different rates between right and left components of the Unruh single-particle state on entanglement. The result shows that the reservoir-entanglement will increase with the decrease of the cavity-entanglement when the acceleration parameter is fixed. In addition, there appears the redistribution of entanglement between particle mode and antiparticle mode, when the initial state is in a maximal by entangled state with |qR|=1. We also find that the sudden death of entanglement happens in infinite acceleration limit when |qR|=|qL|=1/√2, whereas the death of entanglement happens at finite acceleration when qR2.
-
Keywords:
- the sudden death of entanglement /
- noninertial frame /
- Unruh effect
[1] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Bennett C H, Shor P W, Smolin J A, Thapliyal A V 1999 Phys. Rev. Lett. 83 3081
[3] Bennett C H, Brassard G, Crépeau C, Josza R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Zhang W J, Guo G C, Song K H 2002 Chin. Phys. B 11 218
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Steane A M 1998 Rep. Prog. Phys. 61 117
[7] Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404
[8] Yu T, Eberly J H 2006 Opt. Commun. 264 393
[9] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H, Davidovich L 2007 Science 316 579
[10] Laurat J, Schoi K, Deng H, Chou C W, Kimble H J 2007 Phys. Rev. Lett. 99 180504
[11] Dodd P J, Halliwell J J 2004 Phys. Rev. A 69 052105
[12] Jamróz A 2006 J. Phys. A 39 7727
[13] López C E, Romero G, Lastra F, Solano E, Retamal J C 2008 Phys. Rev. Lett. 101 080503
[14] Alsing P M, Milburn G J 2003 Phys. Rev. Lett. 91 180404
[15] Fuentes-Schulier I, Mann R B 2005 Phys. Rev. Lett. 95 120404
[16] Alsing P M, Fuentes-Schulier I, Mann R B, Tessier T E 2006 Phys. Rev. A 74 032326
[17] Wang J, Jing J 2010 Phys. Rev. A 82 032324
[18] Zhang W P, Deng J F, Jing J L 2010 arXiv:1011.5700v2
[19] Brusche D E, Louko J, Martín-Martínez E, Dragan A, Fuentes I 2010 Phys. Rev. A 82 042332
[20] Mart’n-Mart’nez E, Fuentes I 2011 Phys. Rev. A 83 052306
[21] Montero M, Martín-Martínez E 2011 Phys. Rev. A 83 062323
[22] Wang Y, Ji X 2012 J. Mod. Opt. 59 571
[23] Chang J, Kwon Y 2012 Phys. Rev. A 85 032302
-
[1] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Bennett C H, Shor P W, Smolin J A, Thapliyal A V 1999 Phys. Rev. Lett. 83 3081
[3] Bennett C H, Brassard G, Crépeau C, Josza R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Zhang W J, Guo G C, Song K H 2002 Chin. Phys. B 11 218
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Steane A M 1998 Rep. Prog. Phys. 61 117
[7] Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404
[8] Yu T, Eberly J H 2006 Opt. Commun. 264 393
[9] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H, Davidovich L 2007 Science 316 579
[10] Laurat J, Schoi K, Deng H, Chou C W, Kimble H J 2007 Phys. Rev. Lett. 99 180504
[11] Dodd P J, Halliwell J J 2004 Phys. Rev. A 69 052105
[12] Jamróz A 2006 J. Phys. A 39 7727
[13] López C E, Romero G, Lastra F, Solano E, Retamal J C 2008 Phys. Rev. Lett. 101 080503
[14] Alsing P M, Milburn G J 2003 Phys. Rev. Lett. 91 180404
[15] Fuentes-Schulier I, Mann R B 2005 Phys. Rev. Lett. 95 120404
[16] Alsing P M, Fuentes-Schulier I, Mann R B, Tessier T E 2006 Phys. Rev. A 74 032326
[17] Wang J, Jing J 2010 Phys. Rev. A 82 032324
[18] Zhang W P, Deng J F, Jing J L 2010 arXiv:1011.5700v2
[19] Brusche D E, Louko J, Martín-Martínez E, Dragan A, Fuentes I 2010 Phys. Rev. A 82 042332
[20] Mart’n-Mart’nez E, Fuentes I 2011 Phys. Rev. A 83 052306
[21] Montero M, Martín-Martínez E 2011 Phys. Rev. A 83 062323
[22] Wang Y, Ji X 2012 J. Mod. Opt. 59 571
[23] Chang J, Kwon Y 2012 Phys. Rev. A 85 032302
计量
- 文章访问数: 5993
- PDF下载量: 564
- 被引次数: 0