搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆管潜射流生成偶极子涡特性实验

陈科 尤云祥 胡天群

引用本文:
Citation:

圆管潜射流生成偶极子涡特性实验

陈科, 尤云祥, 胡天群

Experiments on vortex dipoles generated by a submerged round jet

Chen Ke, You Yun-Xiang, Hu Tian-Qun
PDF
导出引用
  • 利用溢流恒压装置产生具有稳定出流速度的圆管潜射流, 结合染色液流态显示方法, 在多种射流无量纲潜深d/H、雷诺数Re以及限制数C的组合下, 实验研究了该潜射流动量在有限深密度均匀流体中的演化特性, 其中d为射流潜深, H为水深. 研究表明, 当C1时潜射流表现为深水特征, 而当1 C2时潜射流表现为过渡特征, 在这两种情况下均不产生任何形式的大尺度相干结构; 当2 C10时潜射流表现为浅水特征, 而C10时潜射流表现为极浅水特征, 在这两种情况下均产生大尺度的偶极子涡结构. 对极浅水特征潜射流, 在各种无量纲潜深下, 偶极子涡结构的无量纲形成时间tf*与无量纲射流时间Tinj*均满足相同的正比例关系; 对浅水特征潜射流, 当d/H=0.5时, tf*与Tinj*满足某种线性关系, 但对其他无量纲潜深, tf*与Tinj*之间无明显规律.
    The formation mechanism and evolution characteristics of a submerged round jet in a uniform fluid of finite depth are investigated experimentally. A spillover system is designed to produce a continuous horizontal jet in the background fluid with a constant velocity, and the flow is visualized by the dyed liquid. Experiments are conducted under different combinations of Reynolds number Re, confinement number C and nondimensional draft d/H, where d is the vertical distance from the jet to the free surface, and H is the depth of the ambient fluid. Four flow patterns are identified for various C. When C1, the jet shows a deep-water pattern, while for 1 C2, it shows the transitional pattern, the jets do not develop a structured flow for the two jet patterns. When 2 C10, the jet shows the shallow-water pattern, while if C10, the jet shows the extreme-shallow-water pattern. In both these two patterns, the jets generate vortex dipole structures. In the extreme-shallow water pattern, the nondimensional vortex formation time tf* for the vortex dipole structure is proportional to the nondimensional injection time Tinj* for various draft d/H. In the shallow-water pattern, tf* depends linearly on Tinj*Re1/2 when the draft d/H=0.5; however, there is no observable relationships between tf* and Tinj* for other draft d/H.
    • 基金项目: 国家自然科学基金(批准号:11072153)和海洋工程国家重点实验室基金(批准号:GP010819)资助的课题.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 11072153), and the Foundation of State Key Laboratory of Ocean Engineering, China (Grant No. GP010819).
    [1]

    Fedorov K N, Ginsburg A I 1986 Ann. Geophisicae 4 507

    [2]

    Fedorov K N, Ginsburg A I 1989 Mesoscale/Synoptic Coherent structures in Geophysical Turbulence 50 1

    [3]

    Van Heijst G J F, Clercx H J H 2009 Annu. Rev. Fluid Mech. 41 143

    [4]

    Ginzburg A I 1992 Oceanology 32 689

    [5]

    Meunier P, Spedding G R 2006 J. Fluid Mech. 552 229

    [6]

    Reed A M, Milgram J H 2002 Annu. Rev. Fluid Mech. 34 469

    [7]

    Abramovich S, Solan A 1973 J. Fluid Mech. 59 791

    [8]

    Sozou G, Pickering W M 1977 J. Fluid Mech. 80 673

    [9]

    Sozou G 1979 J. Fluid Mech. 91 541

    [10]

    Chen Y X, Chen K, You Y X 2013 Acta Phys. Sin. 62 114701 (in Chinese) [陈云祥, 陈科, 尤云祥 2013 62 114701]

    [11]

    Voropayev S I, Afanasyev Y D 1994 Vortex Structures in a Stratified Fluid (London: Chapman and Hall)

    [12]

    Flor J B, van Heijst G J F 1994 J.Fluid Mech. 279 101

    [13]

    Flor J B, Fernando H J S, van Heijst G J F 1994 Phys. Fluids 6 287

    [14]

    Fonseka S V, Fernando H J S, van Heijst G J F 1998 J. Geophys. Res. 24 857

    [15]

    Praud O, Fincham A M 2005 J. Fluid Mech. 54 41

    [16]

    Feng B P, Mi J C, Deo R C, Nathan G J 2009 Acta Phys. Sin. 58 7756 (in Chinese) [冯宝平, 米建春, Deo Ravinesh C, Nathan Graham J 2009 58 7756]

    [17]

    Feng B P, Mi J C 2011 Chin. Phys. B 20 074701

    [18]

    Van Heijst G J F, Flor J B 1989 Nature 340 212

    [19]

    Voropayev S I, Afanasyev Y D 1992 J. Fluid Mech. 23 6665

    [20]

    Orlandi P 1990 Phys. Fluids A 2 1429

    [21]

    Voropayev S I, Smirnov S A 2003 Phys. Fluids 15 618

    [22]

    Voropayev S I, McEachem G B, Fernando H J S 1999 Phys. Fluids 11 1682

    [23]

    Chen K, You Y X, Hu T Q, Zhu M H, Wang X Q 2011 Acta Phys. Sin. 60 395 (in Chinese) [陈科, 尤云祥, 胡天群, 朱敏慧, 王小青 2011 60 395]

    [24]

    Chen K, You Y X, Hu T Q, Zhu M H, Wang X Q 2012 Sci. Sini. (Physica, Mechanica and Astronomica) 42 172 (in Chinese) [陈科, 尤云祥, 胡天群, 朱敏慧, 王小青 2012 中国科学G辑 (物理学、力学、天文学) 42 172]

    [25]

    Voropayev S I, Fernando H J S, Smirnov S A 2007 Phys. Fluids 19 1

    [26]

    Uijttewaal W S J, Tukker J 1998 Exp. Fluids 24 192

    [27]

    Booij R, Tukker J 2001 J. Hydra. Res. 39 169

    [28]

    Dracos T, Giger M, Jirka G H 1992 J. Fluid Mech. 241 587

    [29]

    Lin J C, Ozgoren M, Rockwell D 2003 J. Fluid Mech. 485 33

    [30]

    Sous D, Bonneton N, Sommeria J 2004 Phys. Fluids 16 2886

    [31]

    Sous D, Bonneton N, Sommeria J 2005 Euro. J. Mech. B/Fluids 24 19

    [32]

    Lee J H W, Chu V H 2003 Turbulent Jets and Plumes: A Lagrangian Approach (Kluwer Academic Publisher), p6

    [33]

    Nikora V, Nokes R, Veale W, Davidson M, Jirka G H 2007 Environ. Fluid Mech. 7 159

    [34]

    Chu V H, Babarutsi S 1989 J. Hydra. Eng. 114 10

  • [1]

    Fedorov K N, Ginsburg A I 1986 Ann. Geophisicae 4 507

    [2]

    Fedorov K N, Ginsburg A I 1989 Mesoscale/Synoptic Coherent structures in Geophysical Turbulence 50 1

    [3]

    Van Heijst G J F, Clercx H J H 2009 Annu. Rev. Fluid Mech. 41 143

    [4]

    Ginzburg A I 1992 Oceanology 32 689

    [5]

    Meunier P, Spedding G R 2006 J. Fluid Mech. 552 229

    [6]

    Reed A M, Milgram J H 2002 Annu. Rev. Fluid Mech. 34 469

    [7]

    Abramovich S, Solan A 1973 J. Fluid Mech. 59 791

    [8]

    Sozou G, Pickering W M 1977 J. Fluid Mech. 80 673

    [9]

    Sozou G 1979 J. Fluid Mech. 91 541

    [10]

    Chen Y X, Chen K, You Y X 2013 Acta Phys. Sin. 62 114701 (in Chinese) [陈云祥, 陈科, 尤云祥 2013 62 114701]

    [11]

    Voropayev S I, Afanasyev Y D 1994 Vortex Structures in a Stratified Fluid (London: Chapman and Hall)

    [12]

    Flor J B, van Heijst G J F 1994 J.Fluid Mech. 279 101

    [13]

    Flor J B, Fernando H J S, van Heijst G J F 1994 Phys. Fluids 6 287

    [14]

    Fonseka S V, Fernando H J S, van Heijst G J F 1998 J. Geophys. Res. 24 857

    [15]

    Praud O, Fincham A M 2005 J. Fluid Mech. 54 41

    [16]

    Feng B P, Mi J C, Deo R C, Nathan G J 2009 Acta Phys. Sin. 58 7756 (in Chinese) [冯宝平, 米建春, Deo Ravinesh C, Nathan Graham J 2009 58 7756]

    [17]

    Feng B P, Mi J C 2011 Chin. Phys. B 20 074701

    [18]

    Van Heijst G J F, Flor J B 1989 Nature 340 212

    [19]

    Voropayev S I, Afanasyev Y D 1992 J. Fluid Mech. 23 6665

    [20]

    Orlandi P 1990 Phys. Fluids A 2 1429

    [21]

    Voropayev S I, Smirnov S A 2003 Phys. Fluids 15 618

    [22]

    Voropayev S I, McEachem G B, Fernando H J S 1999 Phys. Fluids 11 1682

    [23]

    Chen K, You Y X, Hu T Q, Zhu M H, Wang X Q 2011 Acta Phys. Sin. 60 395 (in Chinese) [陈科, 尤云祥, 胡天群, 朱敏慧, 王小青 2011 60 395]

    [24]

    Chen K, You Y X, Hu T Q, Zhu M H, Wang X Q 2012 Sci. Sini. (Physica, Mechanica and Astronomica) 42 172 (in Chinese) [陈科, 尤云祥, 胡天群, 朱敏慧, 王小青 2012 中国科学G辑 (物理学、力学、天文学) 42 172]

    [25]

    Voropayev S I, Fernando H J S, Smirnov S A 2007 Phys. Fluids 19 1

    [26]

    Uijttewaal W S J, Tukker J 1998 Exp. Fluids 24 192

    [27]

    Booij R, Tukker J 2001 J. Hydra. Res. 39 169

    [28]

    Dracos T, Giger M, Jirka G H 1992 J. Fluid Mech. 241 587

    [29]

    Lin J C, Ozgoren M, Rockwell D 2003 J. Fluid Mech. 485 33

    [30]

    Sous D, Bonneton N, Sommeria J 2004 Phys. Fluids 16 2886

    [31]

    Sous D, Bonneton N, Sommeria J 2005 Euro. J. Mech. B/Fluids 24 19

    [32]

    Lee J H W, Chu V H 2003 Turbulent Jets and Plumes: A Lagrangian Approach (Kluwer Academic Publisher), p6

    [33]

    Nikora V, Nokes R, Veale W, Davidson M, Jirka G H 2007 Environ. Fluid Mech. 7 159

    [34]

    Chu V H, Babarutsi S 1989 J. Hydra. Eng. 114 10

  • [1] 林黎明. 低雷诺数下钝体三维尾迹中的涡量符号律.  , 2020, 69(3): 034701. doi: 10.7498/aps.69.20191011
    [2] 郑监, 张舵, 蒋邦海, 卢芳云. 气泡与自由液面相互作用形成水射流的机理研究.  , 2017, 66(4): 044702. doi: 10.7498/aps.66.044702
    [3] 郭广明, 刘洪, 张斌, 张忠阳, 张庆兵. 混合层流场中涡结构对流速度的特性.  , 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [4] 刘军, 付峥, 冯其京, 王裴. 爆轰驱动金属飞层对碰凸起和微射流形成的数值模拟研究.  , 2015, 64(23): 234701. doi: 10.7498/aps.64.234701
    [5] 高广健, 邓明晰, 李明亮. 圆管结构中周向导波非线性效应的模式展开分析.  , 2015, 64(18): 184303. doi: 10.7498/aps.64.184303
    [6] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析.  , 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [7] 陈云祥, 陈科, 尤云祥, 胡天群. 层流圆管潜射流生成蘑菇形涡结构特性数值研究.  , 2013, 62(11): 114701. doi: 10.7498/aps.62.114701
    [8] 姚天亮, 刘海峰, 许建良, 李伟锋. 空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动.  , 2012, 61(23): 234704. doi: 10.7498/aps.61.234704
    [9] 陈科, 尤云祥, 胡天群, 朱敏慧, 王小青. 分层流体中移动动量源生成准二维偶极子涡街特性实验.  , 2011, 60(2): 024702. doi: 10.7498/aps.60.024702
    [10] 李鹤, 杨周, 张义民, 闻邦椿. 基于径向基神经网络预测的混沌时间序列嵌入维数估计方法.  , 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [11] 杜诚, 徐敏义, 米建春. 雷诺数对圆形渐缩喷嘴湍流射流的影响.  , 2010, 59(9): 6331-6338. doi: 10.7498/aps.59.6331
    [12] 崔战友, 陈天宁, 许锐奇, 吴九汇. 二维开缝金属圆管带隙结构禁带特性中缝参数的研究.  , 2009, 58(7): 4752-4759. doi: 10.7498/aps.58.4752
    [13] 米建春, 冯宝平, Deo Ravinesh C, Nathan Graham J. 出口雷诺数对平面射流自保持性的影响.  , 2009, 58(11): 7756-7764. doi: 10.7498/aps.58.7756
    [14] 王 健, 雷乃光, 余重秀. 椭圆空气孔微结构光纤限制损耗的分析.  , 2007, 56(2): 946-951. doi: 10.7498/aps.56.946
    [15] 樊锡君, 田淑芬, 李 健, 刘 杰, 白成杰. 开放的无粒子数反转激光系统中原子响应的时间演化和光放大机制.  , 2000, 49(9): 1719-1725. doi: 10.7498/aps.49.1719
    [16] 郑德娟, 李 丹, 周 雁, 韩宝善. 枝状畴的形成及分形维数计算.  , 1999, 48(13): 250-256. doi: 10.7498/aps.48.250.2
    [17] 俞谦, 王健华, 李德杰, 王玉田, 庄岩, 姜炜, 黄绮, 周钧铭. InGaAs/InAlAs多量子阱结构的量子限制Stark效应研究.  , 1996, 45(2): 274-282. doi: 10.7498/aps.45.274
    [18] 洪时中, 洪时明. 用Grassberger-Procaccia方法计算吸引子维数的基本限制.  , 1994, 43(8): 1228-1233. doi: 10.7498/aps.43.1228
    [19] 刘正东. 光学腔内光子数态的形成与条件.  , 1991, 40(2): 210-218. doi: 10.7498/aps.40.210
    [20] 高智. 利用射流混合获得分子气体的振动粒子数反转.  , 1975, 24(6): 407-418. doi: 10.7498/aps.24.407
计量
  • 文章访问数:  5925
  • PDF下载量:  728
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-06
  • 修回日期:  2013-07-03
  • 刊出日期:  2013-10-05

/

返回文章
返回
Baidu
map