搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合广义非线性薛定谔方程的相互作用表象龙格库塔算法及其误差分析

李磐 时雷 毛庆和

引用本文:
Citation:

耦合广义非线性薛定谔方程的相互作用表象龙格库塔算法及其误差分析

李磐, 时雷, 毛庆和

A fourth-order Runge-Kutta in the interaction picture algorithm for simulating coupled generalized nonlinear Schrödinger equation and its error analysis

Li Pan, Shi Lei, Mao Qing-He
PDF
导出引用
  • 本文通过表象变换, 将耦合广义非线性薛定谔方程 (C-GNLSE) 变换成相互作用表象中的向量方程, 再利用向量形式的4阶龙格-库塔迭代格式, 建立了一种在频域内求解C-GNLSE的同步更新迭代算法. 通过将该向量形式的相互作用表象中的4阶龙格-库塔 (V-JH-RK4IP) 算法应用于高双折射光子晶体光纤中超连续谱产生的数值模拟, 验证了算法的有效性, 通过与现有其他典型算法的比较, 表明以V-JH-RK4IP算法求解C-GNLSE具有最高的计算精度和计算效率.
    The numerical simulation method for accurately solving the coupled generalized nonlinear Schrödinger equations (C-GNLSE) is essential for describing the dynamic behavior of ultrashort pulse propagating in optical fiber and developing the corresponding nonlinear fiber-optic devices. C-GNLSE in the normal picture is first mapped into the interaction picture by the representation transformation, and then, the two coupled nonlinear partial differential equations in the interaction picture are solved in frequency domain, with synchronous data updating in each iteration step, by using the vector form of Hult’s fourth-order Runge-Kutta iterative scheme. The proposed vector form algorithm of fourth-order Runge-Kutta in interaction picture (V-JH-RK4IP) is verified by using it in simulating the supercontinuum generation in high birefringence photonic crystal fiber. Moreover, the V-JH-RK4IP algorithm also exhibits the highest accuracy and computational efficiency as compared to other classical algorithms.
    • 基金项目: 国家自然科学基金 (批准号: 61250017, 11104282)和中科院重要方向性项目(批准号: KJZD-EW-W02)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61250017, 11104282), and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).
    [1]

    Dudley J M, Taylor J R 2010 Supercontinuum Generation in Optical Fibers (Cambridge University Press)

    [2]

    Agrawal G P 2007 Nonlinear Fiber Optics (Academic Press)

    [3]

    Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S,Vetterlein M, Scherzer E 2002 Opt. Lett. 27 1800

    [4]

    Paulsen H N, Hilligse K M, Thogersen J, Keiding S R, Larsen J J 2003 Opt. Lett. 28 1123

    [5]

    Dudley M, Coen S 2006 Rev. Mod. Phys. 78 1135

    [6]

    Zakharov V E, Shabat A B 1972 Sov. Phys. JETP 34 62

    [7]

    Fermann M E, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 6010

    [8]

    Hohage T, Schmidt F, Konrad-Zuse-Zentrum fr Informationstechnik, Berlin, Germany, 2002 Tech. Rep. ZIB-Report Jan 02-04, 2002

    [9]

    Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 4731 (in Chinese) [赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 58 4731]

    [10]

    Reeves W H, Skyabin D V, Biancalana F, Knight J C, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511

    [11]

    Hillingsoe K M, Paulsen H Thogersen N J, Keiding S R, Larsen J J 2003 J. Opt. Soc. Am. B 20 1887

    [12]

    Siederdissen T H Z, Nielsen N C, Kuhl J, Giessen H 2006 J. Opt. Soc. Am. B 23 1360

    [13]

    Cristiani I, Tediosi R, Tartara L, Degiorgio V 2003 Opt. Express 12 124

    [14]

    Liu X M, Byoungho L 2003 IEEE Photon. Technol. Lett. 15 1549

    [15]

    Blow K J, D Wood 1989 IEEE J. Quantum Electron 25 2665

    [16]

    Hult J 2007 J. Lightw. Technol 25 3770

    [17]

    Sinkin O V, Holzlöhner R, Zweck J, Menyuk C R 2003 J. Lightw. Technol 21 61

    [18]

    Heidt A 2009 J. Lightwave Technol 27 3984

    [19]

    Rieznik A A, Heidt A M, Konig P G, Bettachini V A, Grosz D F 2012 IEEE Photonics Journal 4 552

    [20]

    Lu F, Lin Q, Knox W H, Agrawal G P 2004 Phys. Rev. Lett. 93 183901

    [21]

    TU H H, Liu Y, Liu X M, Turchinovich D, Laegsgaard J, Stephen A B 2012 Opt. Express 20 1113

    [22]

    Nishizawa N, Goto T 2003 Opt. Express 11 359

    [23]

    Voronin A A, Fedotov I V, Kobelke J, Jager M, Schuster K, Fedotov A B, Bartelt H, Zheltikov A M 2012 Opt. Lett. 37 5163

    [24]

    Liu X M 2011 Phys. Rev. A 84 053828

    [25]

    Liu X M 2011 Phys. Rev. A 84 023835

    [26]

    Trillo S, Wabnitz S 1992 J. Opt. Soc. Am. B 9 1061

    [27]

    Martins E R, Spadoti D H, Romero M A, B V Borges 2007 Opt. Express 15 14335

    [28]

    Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086

    [29]

    Menyuk C R, Islam M N, Gordon J P 1991 Opt. Lett. 16 566

    [30]

    Chick B J, Chon J W M, Gu M 2007 Opt. Express 16 20099

  • [1]

    Dudley J M, Taylor J R 2010 Supercontinuum Generation in Optical Fibers (Cambridge University Press)

    [2]

    Agrawal G P 2007 Nonlinear Fiber Optics (Academic Press)

    [3]

    Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S,Vetterlein M, Scherzer E 2002 Opt. Lett. 27 1800

    [4]

    Paulsen H N, Hilligse K M, Thogersen J, Keiding S R, Larsen J J 2003 Opt. Lett. 28 1123

    [5]

    Dudley M, Coen S 2006 Rev. Mod. Phys. 78 1135

    [6]

    Zakharov V E, Shabat A B 1972 Sov. Phys. JETP 34 62

    [7]

    Fermann M E, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 6010

    [8]

    Hohage T, Schmidt F, Konrad-Zuse-Zentrum fr Informationstechnik, Berlin, Germany, 2002 Tech. Rep. ZIB-Report Jan 02-04, 2002

    [9]

    Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009 Acta Phys. Sin. 58 4731 (in Chinese) [赵磊, 隋展, 朱启华, 张颖, 左言磊 2009 58 4731]

    [10]

    Reeves W H, Skyabin D V, Biancalana F, Knight J C, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511

    [11]

    Hillingsoe K M, Paulsen H Thogersen N J, Keiding S R, Larsen J J 2003 J. Opt. Soc. Am. B 20 1887

    [12]

    Siederdissen T H Z, Nielsen N C, Kuhl J, Giessen H 2006 J. Opt. Soc. Am. B 23 1360

    [13]

    Cristiani I, Tediosi R, Tartara L, Degiorgio V 2003 Opt. Express 12 124

    [14]

    Liu X M, Byoungho L 2003 IEEE Photon. Technol. Lett. 15 1549

    [15]

    Blow K J, D Wood 1989 IEEE J. Quantum Electron 25 2665

    [16]

    Hult J 2007 J. Lightw. Technol 25 3770

    [17]

    Sinkin O V, Holzlöhner R, Zweck J, Menyuk C R 2003 J. Lightw. Technol 21 61

    [18]

    Heidt A 2009 J. Lightwave Technol 27 3984

    [19]

    Rieznik A A, Heidt A M, Konig P G, Bettachini V A, Grosz D F 2012 IEEE Photonics Journal 4 552

    [20]

    Lu F, Lin Q, Knox W H, Agrawal G P 2004 Phys. Rev. Lett. 93 183901

    [21]

    TU H H, Liu Y, Liu X M, Turchinovich D, Laegsgaard J, Stephen A B 2012 Opt. Express 20 1113

    [22]

    Nishizawa N, Goto T 2003 Opt. Express 11 359

    [23]

    Voronin A A, Fedotov I V, Kobelke J, Jager M, Schuster K, Fedotov A B, Bartelt H, Zheltikov A M 2012 Opt. Lett. 37 5163

    [24]

    Liu X M 2011 Phys. Rev. A 84 053828

    [25]

    Liu X M 2011 Phys. Rev. A 84 023835

    [26]

    Trillo S, Wabnitz S 1992 J. Opt. Soc. Am. B 9 1061

    [27]

    Martins E R, Spadoti D H, Romero M A, B V Borges 2007 Opt. Express 15 14335

    [28]

    Lin Q, Agrawal G P 2006 Opt. Lett. 31 3086

    [29]

    Menyuk C R, Islam M N, Gordon J P 1991 Opt. Lett. 16 566

    [30]

    Chick B J, Chon J W M, Gu M 2007 Opt. Express 16 20099

  • [1] 温嘉美, 薄文博, 温学坤, 戴朝卿. 耦合饱和非线性薛定谔方程的多极矢量孤子.  , 2023, 72(10): 100502. doi: 10.7498/aps.72.20222284
    [2] 李敏, 王博婷, 许韬, 水涓涓. 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制.  , 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [3] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法.  , 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [4] 王伟, 左玉婷, 董婷婷, 朱维震, 林天旭, 徐海东, 卿源, 韩颖, 齐跃峰, 侯蓝田. 飞秒脉冲抽运掺镱微结构光纤产生超连续谱的实验研究.  , 2019, 68(13): 134206. doi: 10.7498/aps.68.20182051
    [5] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变.  , 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [6] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性.  , 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [7] 谌鸿伟, 郭良, 靳爱军, 陈胜平, 侯静, 陆启生. 基于光子晶体光纤的百瓦量级超连续谱光源研究.  , 2013, 62(15): 154207. doi: 10.7498/aps.62.154207
    [8] 李曙光, 朱星平, 薛建荣. 全波段正常色散光子晶体光纤中超连续谱的产生.  , 2013, 62(20): 204206. doi: 10.7498/aps.62.204206
    [9] 宋诗艳, 王晶, 孟俊敏, 王建步, 扈培信. 深海内波非线性薛定谔方程的研究.  , 2010, 59(2): 1123-1129. doi: 10.7498/aps.59.1123
    [10] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响.  , 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [11] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生.  , 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [12] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析.  , 2009, 58(7): 4731-4737. doi: 10.7498/aps.58.4731
    [13] 张丽平, 李海宁, 吴 洪, 李 贤, 丁良恩. Ar气中超连续谱产生的研究.  , 2008, 57(2): 904-908. doi: 10.7498/aps.57.904
    [14] 刘卫华, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明, 彭钦军, 许祖彦. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究.  , 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [15] 程雪苹, 林 机, 王志平. 微扰的耦合非线性薛定谔方程的近似求解.  , 2007, 56(6): 3031-3038. doi: 10.7498/aps.56.3031
    [16] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析.  , 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [17] 成纯富, 王晓方, 鲁 波. 飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生.  , 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
    [18] 田 强, 马本堃. 用非线性薛定谔方程讨论超晶格中畴的运动.  , 1999, 48(11): 2125-2130. doi: 10.7498/aps.48.2125
    [19] 李子荣, 孟庆安, 曹琪娟, 孙克, 魏玉年. Fe4N合金的各向异性超精细相互作用.  , 1996, 45(2): 314-317. doi: 10.7498/aps.45.314
    [20] 林家翘. 在二元合金超格中,原子间相互作用之能量与其排列之关系.  , 1939, 3(2): 182-197. doi: 10.7498/aps.3.182
计量
  • 文章访问数:  8993
  • PDF下载量:  1032
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-04
  • 修回日期:  2013-04-07
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map